Skip to main content

The Development of Ambient Pressure X-Ray Photoelectron Spectroscopy and Its Application to Surface Science

  • Chapter
  • First Online:

Abstract

Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is an emerging in situ spectroscopic technique which is creating a new road map in the world of surface science. AP-XPS is a powerful tool to investigate and help us to understand the electronic structures of surfaces and the chemical states of adsorbates and substrates under realistic conditions. The purpose of this report is to present the role of AP-XPS in surface science by reviewing the development and applications of AP-XPS. This chapter contains the brief history of AP-XPS, the latest progress in the instrumentation, and its recent results from noble model systems as well as practical real system in surface science. Also, the directions of future research using AP-XPS are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Freund H-J, Kuhlenbeck H, Bäumer M (2000) Catalysis and surface science: what do we learn from studies of oxide-supported cluster model systems? Adv Catal 45:333–384

    Article  CAS  Google Scholar 

  2. Bäumer M, Freund H-J (1999) Metal deposits on well-ordered oxide films. Prog Surf Sci 61:127–198

    Article  Google Scholar 

  3. Freund H-J, Kuhlenbeck H, Libuda J, Rupprechter G, Bäumer M, Hamann H (2001) Bridging the pressure and materials gaps between catalysis and surface science: clean and modified oxide surfaces. Top Catal 15:201–209

    Article  CAS  Google Scholar 

  4. Somorjai GA (1994) Introduction to surface chemistry and catalysis. Wiley, New York

    Google Scholar 

  5. Somorjai GA (1978) Surface science. Science 201:489–497

    Article  CAS  Google Scholar 

  6. Siegbahn K, Nordling C, Fahlman A, Hamrin K, Hedman J, Nordberg R, Johansson C, Bergmark T, Karlsson S-E, Lindgren I, Lindberg B (1967) ESCA: atomic, molecular and solid state structure studied by means of electron spectroscopy. Almqvist and Wiksell, Uppsala

    Google Scholar 

  7. Fadley CS, Brundle CR, Baker AD (1978) Electron spectroscopy: theory, techniques, and applications, vol 2. Academic, London

    Google Scholar 

  8. Hüfner S (2003) Photoelectron spectroscopy: principles and applications, 3rd edn. Springer-Verlag Berlin Heidelberg New York

    Google Scholar 

  9. Siegbahn K, Nordling C, Johansson G, Hedman J, Heden P-F, Hamrin K, Gelius U, Bergmark T, Werme LO, Manne R, Baer Y (1970) ESCA applied to free molecules. North-Holland, Amsterdam

    Google Scholar 

  10. Fadley CS (1974) The International Journal on Theoretical and Experimental Aspects of Electron Spectroscopy Instrumentation for surface studies: XPS angular distributions. J Electron Spectrosc Rel Phen 5:725–754

    Article  CAS  Google Scholar 

  11. Fadley CS (1984) Progress in surface science. In Davison S (ed). Pergamon Press, New York, vol 16, p 275

    Google Scholar 

  12. Wannberg B (2009) Electron optics development for photo-electron spectrometers. Nucl Instrum Methods Phys Res, Sect A 601:182–194

    Article  CAS  Google Scholar 

  13. Powell CJ, Jablonski A, Tilinin IS, Tanuma S, Penn DR (1999) Surface sensitivity of Auger-electron spectroscopy and X-ray photoelectron spectroscopy. J Electron Spectrosc Rel Phen 98–99:1–15

    Article  Google Scholar 

  14. Tanuma S, Powell CJ, Penn DR (2005) Calculations of electron inelastic mean free paths, VIII. Data for 15 elemental solids over the 50–2000 eV range. Surf Interface Anal 37:1–14

    Article  CAS  Google Scholar 

  15. Su X, Cremer PS, Shen YR, Somorjai GA (1996) Pressure dependence (10−10–700 Torr) of the vibrational spectra of adsorbed CO on Pt(111) studied by sum frequency generation. Phys Rev Lett 77:3858–3860

    Article  CAS  Google Scholar 

  16. Rupprechter G (2004) 8 Surface vibrational spectroscopy on noble metal catalysts from ultrahigh vacuum to atmospheric pressure. Annu Rep Prog Chem Sect C Phys Chem 100:237–311

    Article  CAS  Google Scholar 

  17. Rupprechter G, Weilach C (2008) Spectroscopic studies of surface–gas interactions and catalyst restructuring at ambient pressure: mind the gap! J Phys Condens Mater 20:184019

    Article  Google Scholar 

  18. Siegbahn H, Siegbahn K (1973) ESCA applied to liquids. J Electron Spectrosc Rel Phen 2:319–325

    Article  CAS  Google Scholar 

  19. Fellner-Feldegg H, Siegbahn H, Asplund L, Kelfve P, Siegbahn K (1975) ESCA applied to liquids IV. A wire system for ESCA measurements on liquids. J Electron Spectrosc Rel Phen 7:421–428

    Article  CAS  Google Scholar 

  20. Siegbahn H, Svensson S, Lundholm M (1981) A new method for ESCA studies of liquid-phase samples. J Electron Spectrosc Rel Phen 24:205–213

    Article  CAS  Google Scholar 

  21. Joyner RW, Roberts MW, Yates K (1979) A “high-pressure” electron spectrometer for surface studies. Surf Sci 87:501–509

    Article  CAS  Google Scholar 

  22. Ruppender HJ, Grunze M, Kong CW, Wilmers M (1990) In situ X-ray photoelectron spectroscopy of surfaces at pressures up to 1 mbar. Surf Interface Anal 15:245–253

    Article  CAS  Google Scholar 

  23. Kaichev VV, Sorokin AM, Timoshin AI, Vovk EI (2002) An information measuring system for thermodesorption studies. Instrum Exp Tech 45:50–54

    Article  Google Scholar 

  24. Joyner RW, Roberts MW (1979) A study of the adsorption of oxygen on silver at high pressure by electron spectroscopy. Chem Phys Lett 60:459–462

    Article  CAS  Google Scholar 

  25. Kaichev VV, Prosvirin IP, Bukhtiyarov VI, Unterhalt H, Rupprechter G, Freund H-J (2003) High-pressure studies of CO adsorption on Pd(111) by X-ray photoelectron spectroscopy and sum-frequency generation. J Phys Chem B 107:3522–3527

    Article  CAS  Google Scholar 

  26. Ogletree DF, Bluhm H, Lebedev G, Hussain Z, Fadley C, Salmeron M (2002) A differentially pumped electrostatic lens system for photoemission studies in the millibar range. Rev Sci Instrum 73:3872–3877

    Article  CAS  Google Scholar 

  27. Ogletree DF, Bluhm H, Hebenstreit ED, Salmeron M (2009) Photoelectron spectroscopy under ambient pressure and temperature conditions. Nucl Instrum Methods Phys Res A 601:151–160

    Article  Google Scholar 

  28. Salmeron M, Schlögl R (2008) Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surf Sci Rep 63:169–199

    Article  CAS  Google Scholar 

  29. Grass ME, Karlsson PG, Aksoy F, Lundqvist M, Wannberg B, Mun BS, Hussain Z, Liu Z (2010) New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2. Rev Sci Instrum 81:053106

    Article  Google Scholar 

  30. Aksoy F, Grass ME, Joo SH, Jabeen N, Hong YP, Hussain Z, Mun BS, Liu Z (2011) Study of electro-chemical properties of metal–oxide interfaces using a newly constructed ambient pressure X-ray photoelectron spectroscopy endstation. Nucl Instrum Methods Phys Res, Sect A 645:260–265

    Article  CAS  Google Scholar 

  31. Westerström R, Messing ME, Blomberg S, Hellman A, Grönbeck H, Gustafson J, Martin NM, Balmes O, van Rijn R, Andersen JN, Deppert K, Bluhm H, Liu Z, Grass ME, Hävecker M, Lundgren E (2011) Oxidation and reduction of Pd(100) and aerosol-deposited Pd nanoparticles. Phys Rev B 83:115440

    Article  Google Scholar 

  32. Imbihl R, Ertl G (1995) Oscillatory kinetics in heterogeneous catalysis. Chem Rev 95:697–733

    Article  CAS  Google Scholar 

  33. Oertzen AV, Mikhailov AS, Rotermund HH, Ertl G (1998) Subsurface oxygen in the CO oxidation reaction on Pt(110): experiments and modeling of pattern formation. J Phys Chem B 102:4966–4981

    Article  Google Scholar 

  34. Campbell CT, Ertl G, Kuipers H, Segner J (1980) A molecular beam study of the catalytic oxidation of CO on a Pt(111) surface. J Chem Phys 73:5862–5873

    Article  CAS  Google Scholar 

  35. Hendriksen BLM, Frenken JWM (2002) CO oxidation on Pt(110): scanning tunneling microscopy inside a high-pressure flow reactor. Phys Rev Lett 89:046101

    Article  CAS  Google Scholar 

  36. Ackermann MD, Pedersen TM, Hendriksen BLM, Robach O, Bobaru SC, Popa I, Quiros C, Kim H, Hammer B, Ferrer S, Frenken JWM (2005) Structure and reactivity of surface oxides on Pt(110) during catalytic CO oxidation. Phys Rev Lett 95:255505

    Article  CAS  Google Scholar 

  37. Mars P, van Krevelen DW (1954) Oxidations carried out by means of vanadium oxide catalysts. Spec Suppl Chem Eng Sci 3:41–59

    Article  CAS  Google Scholar 

  38. Li WX, Osterlund L, Vestergaard EK, Van RT, Matthiesen J, Pedersen TM, Laegsgaard E, Hammer B, Besenbacher F (2004) Oxidation of Pt(110). Phys Rev Lett 93:146104–146107

    Google Scholar 

  39. Gao F, Wang Y, Cai Y, Goodman DW (2009) CO oxidation on Pt-group metals from ultrahigh vacuum to near atmospheric pressures. 2. Palladium and platinum. J Phys Chem C 113:174–181

    Article  CAS  Google Scholar 

  40. Chung J, Aksoy F, Grass ME, Kondoh H, Ross P Jr, Liu Z, Mun BS (2009) In-situ study of the catalytic oxidation of CO on a Pt(110) surface using ambient pressure X-ray photoelectron spectroscopy. Surf Sci 603:L35–L38

    Article  CAS  Google Scholar 

  41. Butcher DR, Grass ME, Zeng Z, Aksoy F, Bluhm H, Li W-X, Mun BS, Somorjai GA, Liu Z (2011) In situ oxidation study of Pt(110) and its interaction with CO. J Am Chem Soc 133:20319–20325

    Article  CAS  Google Scholar 

  42. Shimada T, Mun BS, Nakai I, Banno A, Abe H, Iwasawa Y, Ohta T, Kondoh H (2010) Irreversible change in the NO adsorption state on Pt(111) under high pressure studied by AP-XPS, NEXAFS, and STM. J Phys Chem C 114:17030–17035

    Article  CAS  Google Scholar 

  43. Matsumoto M, Tatsumi N, Fukutani K, Okano T, Yamada T, Miyake K, Hate K, Shigekawa H (1999) Adsorption structures of NO/Pt(111) investigated by scanning tunneling microscopy. J Vac Sci Technol A 17:1577–1580

    Article  CAS  Google Scholar 

  44. Matsumoto M, Fukutani K, Okano T, Miyake K, Shigekawa H, Kato H, Okuyama H, Kawai M (2000) Study of the adsorption structure of NO on Pt(111) by scanning tunneling microscopy and high-resolution electron energy-loss spectroscopy. Surf Sci 454–456:101–105

    Article  Google Scholar 

  45. Matsumoto M, Tatsumi N, Fukutani K, Okano T (2002) Dynamical low-energy electron diffraction analysis of the structure of nitric oxide on Pt(111). Surf Sci 513:485–500

    Article  CAS  Google Scholar 

  46. Aizawa H, Morikawa Y, Tsuneyuki S, Fukutani K, Ohno T (2002) A density-functional study of the atomic structures and vibrational spectra of NO/Pt(111). Surf Sci 514:394–403

    Article  CAS  Google Scholar 

  47. Zhu JF, Kinne M, Fuhrmann T, Denecke R, Steinrück H-P (2003) In situ high-resolution XPS studies on adsorption of NO on Pt(111). Surf Sci 529:384–396

    Article  CAS  Google Scholar 

  48. Zhu P, Shimada T, Kondoh H, Nakai I, Nagasaka M, Ohta T (2004) Adsorption structures of NO on Pt(111) studied by the near edge X-ray absorption fine structure spectroscopy. Surf Sci 565:232–242

    Article  CAS  Google Scholar 

  49. Hussain Z, Huff WRA, Kellar SA, Moler EJ, Heimann PA, McKinney W, Padmore HA, Fadley CS, Shirley DA (1996) High resolution soft X-ray bending magnet beamline 9.3.2 with circularly polarized radiation capability at the Advanced Light Source. J Electron Spectroc Relat Phenom 80:401–404

    Article  CAS  Google Scholar 

  50. Zaera F, Gopinath CS (2000) Evidence for an N2O intermediate in the catalytic reduction of NO to N2 on rhodium surfaces. Chem Phys Lett 332:209–214

    Article  CAS  Google Scholar 

  51. Nakai I, Kondoh H, Shimada T, Nagasaka M, Yokota R, Katayama T, Amemiya K, Orita H, Ohta T (2009) Mechanism of N + NO reaction on Rh(111) surfaces: a precursor-mediated reaction. J Phys Chem C 113:13257–13265

    Article  CAS  Google Scholar 

  52. Brown WA, Gardner P, King DA (1995) Very low temperature surface reaction: N2O formation from NO dimers at 70 to 90 K on Ag{111}. J Phys Chem 99:7065–7074

    Article  CAS  Google Scholar 

  53. Carlisle CI, King DA (2001) Direct molecular imaging of NO monomers and dimers and a surface reaction on Ag{111}. J Phys Chem B 105:3886–3893

    Article  CAS  Google Scholar 

  54. Jiang Z, Huang W, Tan D, Zhai R, Bao X (2006) Surface chemistry of NO and NO2 on the Pt(110)-(1 × 2) surface: a comparative study. Surf Sci 600:4860–4869

    Article  CAS  Google Scholar 

  55. Polzonetti G, Alnot P, Brundle CR (1990) The adsorption and reactions of NO2 on the Ag(111) surface: I. XPS/UPS and annealing studies between 90 and 300 K. Surf Sci 238:226–236

    Article  CAS  Google Scholar 

  56. Toyoshima R, Yoshida M, Monya Y, Kousa Y, Suzuki K, Abe H, Mun BS, Mase K, Amemiya K, Kondoh H (2012) In situ ambient pressure XPS study of CO oxidation reaction on Pd(111) surfaces. J Phys Chem C 116:18691–18697

    Article  CAS  Google Scholar 

  57. Campbell CT, Ertl G, Kuipers H, Segner J (1981) A molecular beam study of the adsorption and desorption of oxygen from a Pt(111) surface. Surf Sci 107:220–236

    Article  CAS  Google Scholar 

  58. Nakai I, Kondoh H, Amemiya K, Nagasaka M, Shimada T, Yokota R, Nambu A, Ohta T (2005) Mechanism of the CO oxidation reaction on O-precovered Pt(111) surfaces studied with near-edge x-ray absorption fine structure spectroscopy. J Chem Phys 122:134709

    Article  CAS  Google Scholar 

  59. Nakai I, Kondoh H, Shimada T, Resta A, Andersen JN, Ohta T (2006) Mechanism of CO oxidation reaction on O-covered Pd(111) surfaces studied with fast x-ray photoelectron spectroscopy: change of reaction path accompanying phase transition of O domains. J Chem Phys 124:224712

    Article  Google Scholar 

  60. Witterlin J, Völkening S, Janssens TVW, Zambelli T, Ertl G (1997) Atomic and macroscopic reaction rates of a surface-catalyzed reaction. Science 278:1931–1934

    Article  Google Scholar 

  61. Méndez J, Kim SH, Cerdá J, Wintterlin J, Ertl G (2005) Coadsorption phases of CO and oxygen on Pd(111) studied by scanning tunneling microscopy. Phys Rev B 71:085409

    Article  Google Scholar 

  62. Kim SH, Méndez J, Wintterlin J, Ertl G (2005) Enhanced reactivity of adsorbed oxygen on Pd(111) induced by compression of the oxygen layer. Phys Rev B 72:155414

    Article  Google Scholar 

  63. Nakao K, Watanabe O, Sasaki T, Ito S, Tomishige K, Kunimori K (2007) CO oxidation on Pd(111), Pt(111), and Rh(111) surfaces studied by infrared chemiluminescence spectroscopy. Surf Sci 601:3796–3800

    Article  CAS  Google Scholar 

  64. Hendriksen BLM, Bobaru SC, Frenken JWM (2004) Oscillatory CO oxidation on Pd(100) studied with in situ scanning tunneling microscopy. Surf Sci 552:229–242

    Article  CAS  Google Scholar 

  65. Chen MS, Cai Y, Gath KK, Axnanda S, Goodman DW (2007) Highly active surfaces for CO oxidation on Rh, Pd, and Pt. Surf Sci 601:5326–5331

    Article  CAS  Google Scholar 

  66. Gao F, McClure SM, Cai Y, Gath KK, Wang Y, Chen MS, Guo QL, Goodman DW (2009) CO oxidation trends on Pt-group metals from ultrahigh vacuum to near atmospheric pressures: a combined in situ PM-IRAS and reaction kinetics study. Surf Sci 603:65–70

    Article  CAS  Google Scholar 

  67. Chen M, Wang XV, Zhang L, Tang Z, Wan H (2010) Active surfaces for CO oxidation on palladium in the hyperactive state. Langmuir 26:18113–18118

    Article  CAS  Google Scholar 

  68. Lundgren E, Kresse G, Klein C, Borg M, Andersen JN, De Stantis M, Gauthier Y, Konvicka C, Schmid M, Varga P (2002) Two-dimensional oxide on Pd(111). Phys Rev Lett 88:246103

    Article  CAS  Google Scholar 

  69. Zemlynov D, Aszalos-Kiss B, Kleimenov E, Teschner D, Zafeiratos S, Hävecker M, Knop-Gericke A, Schlögl R, Gsbasch H, Unterberger W, Hayek K, Klötzer B (2006) In situ XPS study of Pd(111) oxidation. Part 1: 2D oxide formation in 10−3 mbar O2. Surf Sci 600:983–994

    Article  Google Scholar 

  70. Gabasch H, Unterberger W, Hayek K, Klötzer B, Klemenov E, Teschner D, Zafeiratos S, Hävecker M, Knop-Gericke A, Schlögl R, Han J, Ribeiro FH, Aszalos-Kiss B, Curtin T, Zemlyanov D (2006) In situ XPS study of Pd(111) oxidation at elevated pressure, Part 2: palladium oxidation in the 10−1 mbar range. Surf Sci 600:2980–2989

    Article  CAS  Google Scholar 

  71. Ketteler G, Ogletree DF, Bluhm H, Liu H, Hebenstreit ELD, Salmeron M (2005) In situ spectroscopic study of the oxidation and reduction of Pd(111). J Am Chem Soc 127: 18269–18273

    Article  CAS  Google Scholar 

  72. Amemiya K, Kousa Y, Nakamoto S, Harada T, Kozai S, Yoshida M, Abe H, Sumii R, Sakamaki M, Kondoh H (2011) Real-time observation of CO oxidation reaction on Ir(111) surface at 33 ms resolution by means of wavelength-dispersive near-edge x-ray absorption fine structure spectroscopy. Appl Phys Lett 99:074104

    Article  Google Scholar 

  73. Faulkner LR (1988) In situ characterization of electrochemical processes. J Electrochem Soc 135:245C–246C

    Article  Google Scholar 

  74. Ross PN (1979) Structure sensitivity in the electrocatalytic properties of Pt. I. Hydrogen adsorption on low index single crystals and the role of steps. J Electrochem Soc 126:67–77

    Article  CAS  Google Scholar 

  75. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  76. Adler SB (2004) Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 104:4791–4843

    Article  CAS  Google Scholar 

  77. DeCaluwe SC, Grass ME, Zhang CJ, El Gabaly F, Bluhm H, Liu Z, Jackson GS, McDaniel AH, McCarty KF, Farrow RL, Linne MA, Hussain Z, Eichhorn BW (2010) In situ characterization of ceria oxidation states in high-temperature electrochemical cells with ambient pressure XPS. J Phys Chem C 114:19853–19861

    Article  CAS  Google Scholar 

  78. El Gabaly F, Grass M, McDaniel AH, Farrow RL, Linne MA, Hussain Z, Bluhm H, Liu Z, McCarty KF (2010) Measuring individual overpotentials in an operating solid-oxide electrochemical cell. Phys Chem Chem Phys 12:12138–12145

    Article  Google Scholar 

  79. Whaley JA, McDaniel AH, El Gabaly F, Farrow RL, Grass ME, Hussain Z, Liu Z, Linne MA, Bluhm H, McCarty KF (2010) Note: fixture for characterizing electrochemical devices in-operando in traditional vacuum systems. Rev Sci Instrum 81:086104

    Article  Google Scholar 

  80. Zhang CJ, Grass ME, McDaniel AH, DeCaluwe SC, El Gabaly F, Liu Z, McCarty KF, Farrow RL, Linne MA, Hussain Z, Jackson GS, Bluhm H, Eichhorn BW (2010) Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray photoelectron spectroscopy. Nat Mater 9:944–949

    Article  CAS  Google Scholar 

  81. Gray AX, Papp C, Ueda S, Balke B, Yamashita Y, Plucinski L, Minár J, Braun J, Ylvisaker ER, Schneider CM, Pickett WE, Ebert H, Kobayashi K, Fadley CS (2011) Probing bulk electronic structure with hard X-ray angle-resolved photoemission. Nat Mater 10:759–764

    Article  CAS  Google Scholar 

  82. Woicik JC, Fischer DA, Vescovo E, Arena DA, Starr DE, Wells BO, Fadley CS (2010) International workshop for new opportunities in hard x-ray photoelectron spectroscopy: HAXPES 2009. Synchron Radiat News 23:19–21

    Article  Google Scholar 

Download references

Acknowledgments

The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We acknowledge the Grants-in-Aid for scientific research (No. 20245004) and the MEXT-Supported Program for the Strategic Research Foundation at Private Universities, 2009–2013 for financial supports. The experiments have been performed under the approval of the Advanced Light Source (ALS-02305) and the Photon Factory Program Advisory Committee (PF PAC Nos. 2008G192 and 2010G151). B.S.M. would like to thank the support by Basic Science Research Program through the NRF by the MEST (2012R1A1A2001745) and by GIST College’s 2013 GUP Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bongjin Simon Mun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mun, B.S., Kondoh, H., Liu, Z., Ross, P.N., Hussain, Z. (2014). The Development of Ambient Pressure X-Ray Photoelectron Spectroscopy and Its Application to Surface Science. In: Park, J. (eds) Current Trends of Surface Science and Catalysis., vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8742-5_9

Download citation

Publish with us

Policies and ethics