Skip to main content

Models of Morphogenesis

  • Chapter
  • First Online:
Mathematical Biophysics

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 2938 Accesses

Abstract

In the process of organism growth and development, cell diversity increases in both metabolic (cell differentiation) and structural (morphogenesis) respects. This is related to a cell’s ability to switch between different dynamic modes of operation. The evolutions of an organism’s shape and cell metabolism are tightly interconnected. For instance, as early as the gastrula state the evolution of the shape of the cell ensemble (inner cavity appearance) and the cell functional variations (mesoderm and endoderm appearance) originate simultaneously and thus comprise the first step of differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bard JB (1981) A model for generating aspects of zebra and other mammalian coat patterns. J Theor Biol 93(2):363–385

    Article  MathSciNet  Google Scholar 

  • Belintsev BN, Belousov LB, Zaraisky AG (1985) Model of epithelial morphogenesis based on elastic forces and the contact cell polarization. Ontogenesis 16:5–14 (Rus)

    Google Scholar 

  • Driesch H (1914) The history and theory of vitalism. Macmillan, London

    Book  Google Scholar 

  • Gierer A (1981) Generation of biological patterns and form: some physical, mathematical and logical aspects. Prog Biophys Mol Biol 37:1–47

    Article  MathSciNet  Google Scholar 

  • Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12(1):30–39

    Article  Google Scholar 

  • Gurvich AG (1944) The theory of biological field. Sov Nauka, Moscow (Rus)

    Google Scholar 

  • Martiel J-L, Goldbeter A (1987) A model based on receptor desensitization for cyclic AMP signalling in Dictyostelium cells. Biophys J 52:807–828

    Article  Google Scholar 

  • Meinhardt H (1982) Models of biological pattern formation. Academic, London

    Google Scholar 

  • Meinhardt H (1995) The algorithmic beauty of sea shells. Springer, Berlin

    Book  Google Scholar 

  • Meinhardt H (2000) Beyond spots and stripes: generation of more complex patterns and modifications and additions of the basic reaction. In: Maini PK, Othmer HG, Santosa F, Keel M (eds) Mathematical models for biological pattern formation. Springer, New York

    Google Scholar 

  • Monk A, Othmer HG (1989) Cyclic AMP oscillations in suspensions of Dictyostelium discoideum. Phil Trans R Soc Lond 323:185–224

    Article  Google Scholar 

  • Murray JD (1981) A pre-pattern formation mechanism for animal coat marking. J Theor Biol 88(1):161–199

    Article  Google Scholar 

  • Murray JD (1993) Mathematical biology. Springer, Berlin

    Book  MATH  Google Scholar 

  • Murray JD (2002) Mathematical biology. I: Introduction. Springer, New York

    Google Scholar 

  • Murray JD (2003) Mathematical biology. II: Spatial models and biomedical applications. Springer, Berlin

    Google Scholar 

  • Oster GF, Murray JD, Harris AK (1983) Mechanical aspects of mesenchymal morphogenesis. J Embryol Exp Morphol 78:83–125

    Google Scholar 

  • Polezhaev AA (2010) Mechanisms of biological morphogenesis. In: Riznichenko G, Rubin A (eds) Dynamic models of processes in cells and subcellular nanostructures. RCD-ICS, Moscow-Izhevsk (Rus)

    Google Scholar 

  • Polezhaev AA, Zykov VS, Müller SC (1998) Destabilization of cell aggregation under nonstationary conditions. Phys Rev E 58(5):6328–6332

    Article  ADS  Google Scholar 

  • Polezhaev AA, Hilgardt C, Mair T et al (2005) Transition from an excitable to an oscillatory state in Dictyostelium discoideum. Syst Biol 152(2):75–79

    Article  Google Scholar 

  • Romanovsky YM, Stepanova NV, Chernavsky DS (2004) Mathematical modeling in biophysics. Introduction to the theoretical biophysics. ICS-RCD, Moscow-Izhevsk (Rus)

    Google Scholar 

  • Segel LA (1984) Modeling dynamic phenomena in molecular and cellular biology. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Soljanik GI, Chernavskii DS (1980) Mathematical model of morphogenesis. Preprint FIAN 8 (Rus)

    Google Scholar 

  • Thomas D (1975) Artificial enzyme membranes, transport, memory, and oscillatory phenomena. In: Thomas D, Kernevez J-P (eds) Analysis and control of immobilized enzyme systems. Springer, Berlin

    Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Phil Trans R Soc Lond B 237:37–71

    Article  ADS  Google Scholar 

  • Vasiljev VA, Romanovsky YM (1976) About the role of diffusion in the autocatalytic systems. In: Theoretical and experimental biophysics, vol 6. Kaliningrad (Rus)

    Google Scholar 

  • Webster G, Wolpert L (1966) Studies on pattern regulation in hydra. J Embryol Exp Morphol 16(1):91–104

    Google Scholar 

  • Young DA (1984) A local activator-inhibitor model of vertebrate skin patterns. Math Biosci 72:51–58

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rubin, A., Riznichenko, G. (2014). Models of Morphogenesis . In: Mathematical Biophysics. Biological and Medical Physics, Biomedical Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-8702-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8702-9_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-8701-2

  • Online ISBN: 978-1-4614-8702-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics