Skip to main content

Method of Direct Multiparticle Simulation of Protein Interactions

  • Chapter
  • First Online:
Mathematical Biophysics

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 2915 Accesses

Abstract

Electron transport processes in the photosynthetic and mitochondrial membranes of a cell are mediated by protein–protein complexes and mobile carriers. For a general kinetic description of these reactions mathematical models have been developed where some modifications of the mass action law are used. The rate constants of biochemical reactions of protein–protein association and concentrations of donor and acceptor protein molecules serve as parameters in these kinetic models. Rate constant values are determined under various conditions (e.g., different pH, ionic strength) and evaluated according to experimental data; therefore, the corresponding kinetic models are essentially phenomenological since their rate constants have effective values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albertsson P-A (2000) The domain structure and function of the thylakoid membrane. Recent Res Dev Bioener 1:143–171

    Google Scholar 

  • Albertsson P-A (2001) A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci 6:349–354

    Article  Google Scholar 

  • Belyaeva NE, Schmitt F-J, Paschenko VZ et al (2008) PSII model-based simulations of single turnover flash-induced transients of fluorescence yield monitored within the time domain of 100ns-10 s on dark-adapted Chlorella pyrenoidosa cells. Photosynth Res 98:105–119

    Article  Google Scholar 

  • Belyaeva NE, Schmitt F-J, Paschenko VZ et al (2011) PS II model based analysis of transient fluorescence yield measured on whole leaves of Arabidopsis thaliana after excitation with light flashes of different energies. Biosystems 103(2):188–195

    Article  Google Scholar 

  • Bendall DS, Manasse RS (1995) Cyclic photophosphorylation and electron transport. Biochim Biophys Acta 1229:23–38

    Article  Google Scholar 

  • Chow WS, Hope AB (2004) Electron fluxes through photosystem I in cucumber leaf discs probed by far-red light. Photosynth Res 81:77–89

    Article  Google Scholar 

  • Cleland RE, Bendall DS (1992) Photosystem I cyclic electron transport: measurement of ferredoxin-plastoquinone reductase activity. Photosynth Res 34:409–418

    Article  Google Scholar 

  • Cruz JA, Salbilla BA, Kanazawa A et al (2001) Inhibition of plastocyanin to P700 + electron transfer in Chlamydomonas reinhardtii by hyperosmotic stress. Plant Physiol 127:1167–1179

    Article  Google Scholar 

  • Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39

    Article  Google Scholar 

  • Fan D-Y, Nie Q, Hope AB et al (2007) Quantification of cyclic electron flow around Photosystem I in spinach leaves during photosynthetic induction. Photosynth Res 94:347–357

    Article  Google Scholar 

  • Gross EL, Pearson DC (2003) Brownian dynamics simulations of the interaction of Chlamydomonas cytochrome f with plastocyanin and cytochrome c6. Biophys J 85:2055–2068

    Article  Google Scholar 

  • Gross EL, Rosenberg I (2006) A Brownian dynamics study of the interaction of Phormidium cytochrome f with various cyanobacterial plastocyanins. Biophys J 90:366–380

    Article  Google Scholar 

  • Haddadian EJ, Gross EL (2005) Brownian dynamics study of cytochrome f interactions with cytochrome c6 and plastocyanin in Chlamydomonas reinhardtii plastocyanin, and cytochrome c6 mutants. Biophys J 88:2323–2339

    Article  Google Scholar 

  • Haddadian EJ, Gross EL (2006) A Brownian dynamics study of the interactions of the luminal domains of the cytochrome b 6 f complex with plastocyanin and cytochrome c 6: the effects of the Rieske FeS protein on the interactions. Biophys J 91:2589–2600

    Article  Google Scholar 

  • Haehnel W, Propper A, Krause H (1980) Evidence for complexed plastocyanin as the immediate electron donor of P-700. Biochim Biophys Acta 593:384–399

    Article  Google Scholar 

  • Haehnel W, Ratajczak R, Robenek H (1989) Lateral distribution and diffusion of plastocyanin in chloroplast thylakoids. J Cell Biol 108:1397–1405

    Article  Google Scholar 

  • Hope AB (2000) Electron transfers amongst cytochrome f, plastocyanin and photosystem I: kinetics and mechanisms. Biochim Biophys Acta 1456:5–26

    Article  Google Scholar 

  • Joliot P, Lavergne J, Beal D et al (1992) Plastoquinone compartmentation in chloroplasts. I. Evidence for domains with different rates of photo-reduction. Biochim Biophys Acta 1101:1–12

    Article  Google Scholar 

  • Kirchhoff H, Horstmann S, Weis E (2000) Control of the photosynthetic electron transport by PQ diffusion microdomains in thylakoids of higher plants. Biochim Biophys Acta 1459:148–168

    Article  Google Scholar 

  • Kirchhoff H, Mukherjee U, Galla H-J (2002) Molecular architecture of the thylakoid membrane: lipid diffusion space for plastoquinone. Biochemistry 41:4872–4882

    Article  Google Scholar 

  • Kovalenko IB, Ustinin DM, Grachev NE et al (2003) Experimental and theoretical investigation of cyclic electron transport around photosystem I. Biofizika 48(4):656–665

    Google Scholar 

  • Kovalenko IB, Abaturova AM, Gromov PA et al (2006) Direct simulation of plastocyanin and cytochrome f interactions in solution. Phys Biol 3:121–129

    Article  ADS  Google Scholar 

  • Kovalenko IB, Abaturova AM, Ustinin DM et al (2007) Multiparticle computer simulation of photosynthetic electron transport in a thylakoid membrane. Biofizika 52(3):492–502

    Google Scholar 

  • Kovalenko IB, Abaturova AM, Gromov PA et al (2008) Computer simulation of plastocyanin–cytochrome f complex formation in the thylakoid lumen. Biophysics 53:140–146

    Article  Google Scholar 

  • Kovalenko IB, Abaturova AM, Riznichenko GY et al (2009) A novel approach to computer simulation of protein–protein complex formation. Dokl Biochem Biophys 427:215–217

    Article  Google Scholar 

  • Kovalenko IB, Knyazeva OS, Riznichenko GY et al (2011a) Mechanisms of interaction of electron transport proteins in photosynthetic membranes of cyanobacteria. Dokl Biochem Biophys 440:272–274

    Article  Google Scholar 

  • Kovalenko IB, Abaturova AM, Diakonova AN et al (2011b) Computer simulation of protein-protein association in photosynthesis. Math Model Nat Phenom 6:39–54

    Article  MathSciNet  Google Scholar 

  • Kovalenko IB, Abaturova AM, Riznichenko GY et al (2011c) Computer simulation of interaction of photosystem 1 with plastocyanin and ferredoxin. Biosystems 103:180–187

    Article  Google Scholar 

  • Krendeleva TE, Kukarskikh GP, Timofeev KN et al (2001) Ferredoxin-dependent cyclic electron transport in isolated thylakoids occurs with the participation of ferredoxin-NADP-reductase. Dokl Ross Akad Nauk 379:1–4 (Rus)

    Google Scholar 

  • Kruger GHJ, Tsimilli-Michael M, Strasser RJ (1997) Light stress provokes plastic and elastic modification in structure and function of Photosystem II in camellia leaves. Physiol Plantarum 101:265–287

    Article  Google Scholar 

  • Kubo R (1966) The fluctuation-dissipation theorem. Rep Prog Phys 29(I):255–284

    Article  ADS  Google Scholar 

  • Lazar D (2003) Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity. J Theor Biol 220:469–503

    Article  Google Scholar 

  • Lazar D (2006) The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct Plant Biol 33:9–30

    Article  MathSciNet  Google Scholar 

  • Malkin R, Niyogi K (2000) Photosynthesis. In: Buchanan BB, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD

    Google Scholar 

  • Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57:521–565

    Article  Google Scholar 

  • Pearson DC Jr, Gross EL (1998) Brownian dynamics study of the interaction between plastocyanin and cytochrome f. Biophys J 75:2698–2711

    Article  Google Scholar 

  • Pearson DC, Gross EL, David ES (1996) Electrostatic properties of cytochrome f: implications for docking with plastocyanin. Biophys J 71:64–76

    Article  Google Scholar 

  • Rienzo FR, Gabdoulline M, Menziani P et al (2001) Electrostatic analysis and Brownian dynamics simulation of the association of plastocyanin and cytochrome f. Biophys J 81:3090–3104

    Article  Google Scholar 

  • Riznichenko GY, Belyaeva NE, Kovalenko IB et al (2009) Mathematical and computer modeling of primary photosynthetic processes. Biophysics 54:10–22

    Article  Google Scholar 

  • Riznichenko GY, Kovalenko IB, Abaturova AM et al (2010) New direct dynamic models of protein interactions coupled to photosynthetic electron transport reactions. Biophys Rev 2:101–110

    Article  Google Scholar 

  • Rubin A, Riznichenko G (2009) Modeling of the primary processes in a photosynthetic membrane. In: Laisk A, Nedbal L, Govindjee (eds) Photosynthesis in silico: understanding complexity from molecules to ecosystems. Springer, Dordrecht

    Google Scholar 

  • Scheller HV (1996) In vitro cyclic electron transport in barley thylakoids follows two independent pathways. Plant Physiol 110:187–194

    Google Scholar 

  • Shimoni EO, Rav-Hon O, Ohad I et al (2005) Three-dimensional organization of higher-plant chloroplast thylakoid membranes revealed by electron tomography. Plant Cell 17:2580–2586

    Article  Google Scholar 

  • Staehelin AL, van der Staay GWM (1996) Structure, composition, functional organization and dynamic properties of thylakoid membranes. In: Govindjee (ed) Advances in photosynthesis and respiration, vol 4. Springer, Dordrecht, p 11

    Google Scholar 

  • Stirbet A, Govindjee, Strasser BJ et al (1998) Chlorophyll a fluorescence induction in higher plants: modeling and numerical simulation. J Theor Biol 193:131–151

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis. Springer, Dordrecht

    Google Scholar 

  • Ullmann GM, Knapp E-W, Kostic NM (1997) Computational simulation and analysis of dynamic association between plastocyanin and cytochrome f. Consequences for the electron-transfer reaction. J Am Chem Soc 119:42–52

    Article  Google Scholar 

  • Yamashita E, Zhang H, Cramer WA (2007) Structure of the cytochrome b6f complex: quinone analogue inhibitors as ligands of heme cn. J Mol Biol 370:39–52

    Article  Google Scholar 

  • Zhu X-G, Govindjee, Baker NR, deSturler E et al (2005) Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II. Planta 223:114–133

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rubin, A., Riznichenko, G. (2014). Method of Direct Multiparticle Simulation of Protein Interactions . In: Mathematical Biophysics. Biological and Medical Physics, Biomedical Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-8702-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8702-9_13

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-8701-2

  • Online ISBN: 978-1-4614-8702-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics