Skip to main content

Principles of Nuclear Medicine Imaging

  • Chapter
  • First Online:
Pediatric and Adolescent Urologic Imaging

Abstract

The unique nature of nuclear imaging allows for detailed functional information lacking in other conventional imaging modalities, such as estimation of global and differential renal function, highly sensitive imaging of the renal cortex to document renal scars, evaluation of urinary drainage to aid in the diagnosis of obstruction, surveillance monitoring of vesicoureteral reflux, and evaluation of testis perfusion in cases of suspected testis torsion with equivocal ultrasound imaging.

The authors outline a brief history of nuclear imaging in pediatric urology and briefly discuss general information including commonly used radioisotopes and comparative radiation dosage. Frequently ordered imaging tests are DTPA estimation of GFR, DMSA renal cortical imaging, MAG3 diuretic renal scan, nuclear cystography, and scrotal scintigraphy. Clinical indications, suggested techniques, sample protocols, diagnostic utility and accuracy, as well as controversies in interpretation are discussed for each study. Additional comparisons between nuclear and conventional imaging with regard to sensitivity, specificity, and radiation dosimetry are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Enlander D, Weber PM, dos Remedios LV. Renal cortical imaging in 35 patients: superior quality with 99Tc-DMSA. J Nucl Med. 1974;15:743–9.

    CAS  PubMed  Google Scholar 

  2. Peters AM, Jones DH, Evans K, et al. Two routes for 99mTc-DMSA uptake into the renal cortical tubular cell. Eur J Nucl Med. 1988;14:555–61.

    Article  CAS  PubMed  Google Scholar 

  3. de Lange MJ, Piers DA, Kosterink JG, et al. Renal handling of 99mTc-DMSA: evidence for glomerular filtration. J Nucl Med. 1989;30:1219–23.

    PubMed  Google Scholar 

  4. Kawamura J, Hosokawa S, Yoshida O, et al. Renal function studies using 99mTc-DMSA. Clin Nucl Med. 1979;4:39–46.

    Article  CAS  PubMed  Google Scholar 

  5. Durand E, Prigent A. Can dimercaptosuccinic acid be used to assess global renal function? Eur J Nucl Med. 2000;27(7):727–9.

    Article  CAS  PubMed  Google Scholar 

  6. Krill A, Cubillos J, Gitlin J, et al. Abdominopelvic ultrasound: a cost-effective way to diagnose solitary kidney. J Urol. 2012;187:2201–4.

    Article  PubMed  Google Scholar 

  7. Itoh K. 99mTc-MAG3: review of pharmacokinetics, clinical application to renal diseases and quantification of renal function. Ann Nucl Med. 2001;15(3):179–90.

    Article  CAS  PubMed  Google Scholar 

  8. Al-Nahhas AA, Jafri RA, Britton KE, et al. Clinical experience with 99mTc-MAG3, mercaptoacetyltriglycine, and a comparison with 99mTc-DTPA. Eur J Nucl Med. 1988;14:453–62.

    Article  CAS  PubMed  Google Scholar 

  9. Bubeck B, Brandau W, Steinbacher M, et al. Technetium-99m labeled renal function and imaging agents: II. Clinical evaluation of 99mTc-MAG3. Int J Rad App Instrum B. 1988;15:109–18.

    Article  CAS  Google Scholar 

  10. Taylor A, Eshima D, Alazraki N. 99mTc-MAG3, A new renal imaging agent: preliminary results in patients. Eur J Nucl Med. 1987;12:510–14.

    Article  PubMed  Google Scholar 

  11. Ritchie G, Wilkinson AG, Prescott RJ. Comparison of differential renal function using 99mTc-MAG3 and 99mTc-DMSA renography in a paediatric population. Pediatr Radiol. 2008;38:857–62.

    Article  PubMed  Google Scholar 

  12. Gordon I, Anderson PJ, Lythgoe MF, et al. Can 99mTc-MAG3 replace 99mTc-DMSA in the exclusion of a focal renal defect? J Nucl Med. 1992;33:2090–3.

    CAS  PubMed  Google Scholar 

  13. Bair HJ, Becker W, Schott G, et al. Is there still a need for 99mTc-DMSA renal imaging? Clin Nucl Med. 1995;20:18–21.

    Article  CAS  PubMed  Google Scholar 

  14. Hauser W, Atkins HL, Nelson KG, et al. 99mTc-DTPA: a new radiopharmaceutical for brain and kidney scanning. Radiology. 1970;94:679–84.

    CAS  PubMed  Google Scholar 

  15. Klopper JF, Hauser W, Atkins HL, et al. Evaluation of 99mTc-DTPA for the measurement of GFR. J Nucl Med. 1972;13:107–10.

    CAS  PubMed  Google Scholar 

  16. Taylor A, Nally JV. Clinical applications of renal scintigraphy. Am J Roentgenol. 1995;164:31–41.

    Article  Google Scholar 

  17. Taylor A, Clark S, Ball T. Comparison of 99mTc-MAG3 and 99mTc-DTPA scintigraphy in neonates. Clin Nucl Med. 1994;19:575–80.

    Article  PubMed  Google Scholar 

  18. Smith T, Gordon I, Kelly JP. Comparison of radiation dose from intravenous pyelography and 99mTc-DMSA scintigraphy in children. Br J Radiol. 1998;71:314–19.

    CAS  PubMed  Google Scholar 

  19. Stabin MG. In: Treves ST, editor. Pediatric nuclear medicine. 2nd ed. Internal Dosimetry in Pediatric Nuclear Medicine. New York: Springer; 1995. p. 556–78.

    Google Scholar 

  20. Ward VL, Strauss KJ, Barnewolt CE, et al. Pediatric radiation exposure and effective dose reduction during voiding cystourethrography. Radiology. 2008;249(3):1002–9.

    Article  PubMed  Google Scholar 

  21. Braren V, Versage PN, Touya JJ, et al. Radioisotopic determination of glomerular filtration rate. J Urol. 1979;121:145–7.

    CAS  PubMed  Google Scholar 

  22. Klopper JF, Hauser W, Atkins HL, et al. Evaluation of 99mTc-DTPA for the measurement of glomerular filtration rate. J Nucl Med. 1972;13:107–10.

    CAS  PubMed  Google Scholar 

  23. Gates GF. Glomerular filtration rate: estimation from fractional renal accumulation of 99mTc-DTPA (Stannous). AJR Am J Roentgenol. 1982;138:565–70.

    Article  CAS  PubMed  Google Scholar 

  24. Koff SA, McDowell GC, Byard M. Diuretic radionuclide assessment of obstruction in the infant. J Urol. 1988;140:1167.

    CAS  PubMed  Google Scholar 

  25. Gonzalez R, Chiou RK. The diagnosis of upper urinary tract obstruction in children: comparison of diuresis renography and pressure flow studies. J Urol. 1985;133:646–9.

    CAS  PubMed  Google Scholar 

  26. Chandhoke PS, Kogan BA, Al-Dahwi A, et al. Monitoring renal function in children with urological abnormalities. J Urol. 1990;144:601–5.

    CAS  PubMed  Google Scholar 

  27. Hansson S, Dhamey M, Sigstrom O, et al. DMSA scintigraphy instead of voiding cystourethrography for infants with urinary tract infection. J Urol. 2004;172:1071–4.

    Article  PubMed  Google Scholar 

  28. Pohl HG, Belman AB. The “top-down” approach to the evaluation of children with febrile UTI. Adv Urol. 2009: 1–5.

    Google Scholar 

  29. Prigent A, Cosgriff P, Gates G, et al. Consensus on quality control of quantitative measurements from the renogram: International Consensus Committee from the Scientific Committee of Radionuclides in Nephrourology. Semin Nucl Med. 1999;29(2):146–59.

    Article  CAS  PubMed  Google Scholar 

  30. Piepsz A, Blaufox MD, Gordon I, et al. Consensus on renal cortical scintigraphy in children with UTI. Semin Nucl Med. 1999;29(2):160–74.

    Article  CAS  PubMed  Google Scholar 

  31. Zeissman HA, Majd M. Importance of methodology on 99mTc-DMSA image quality: imaging pilot study for RIVUR multicenter investigation. J Urol. 2009;182:272–9.

    Article  Google Scholar 

  32. Applegate KE, Connolly LP, Davis RT, et al. A prospective comparison of high resolution planar, pinhole and triple detector SPECT for the comparison of renal cortical defects. Clin Nucl Med. 1997;22(10):673–8.

    Article  CAS  PubMed  Google Scholar 

  33. Rodriguez JL, Perera A, Fraxedas R, et al. Renal 99mTc-DMSA SPET and planar imaging: are they really the same? Nucl Med Commun. 1997;18:556.

    Article  CAS  PubMed  Google Scholar 

  34. Rossleigh MA, Farnsworth RH, Leighton DM, et al. 99mTc-DMSA scintigraphy studies of renal cortical scarring and length. J Nucl Med. 1998;39(7):1280–5.

    CAS  PubMed  Google Scholar 

  35. Treves ST, Majd MM, Kuruc A, et al. Pediatric nuclear medicine. 2nd ed. Chapter 17. New York: Springer; 1995. p. 339–99.

    Google Scholar 

  36. Yen TC, Chen WP, Chang SL, et al. 99mTc-DMSA renal SPECT in diagnosing and monitoring pediatric acute pyelonephritis. J Nucl Med. 1996;37(8):1349–53.

    CAS  PubMed  Google Scholar 

  37. Majd M, Rushton HG, Chandra R, et al. 99mTc-DMSA renal cortical scintigraphy to detect experimental acute pyelonephritis in piglets: comparison of planar (pinhole) and SPECT imaging. J Nucl Med. 1996;37(10):1731–4.

    CAS  PubMed  Google Scholar 

  38. De Sadeleer C, Tondeur M, Melis K, et al. A multicenter trial on interobserver variability in reporting on 99mTc-DMSA planar scintigraphy: a Belgian survey. J Nucl Med. 2000;41(1):23–6.

    PubMed  Google Scholar 

  39. Gacinovic S, Buscome J, Costa DC, et al. Inter-observer agreement in the reporting of Tc-99m DMSA renal studies. Nucl Med Commun. 1996;17:596.

    Article  CAS  PubMed  Google Scholar 

  40. Craig JC, Irwig L, Ford M, et al. Reliability of DMSA for the diagnosis of renal parenchymal abnormality in children. Eur J Nucl Med. 2000;27(11):1610–16.

    Article  CAS  PubMed  Google Scholar 

  41. Craig JC, Wheeler DM, Irwig L, et al. How accurate is DMSA scintigraphy for the diagnosis of acute pyelonephritis? A meta-analysis of experimental studies. J Nucl Med. 2000;41(6):986–93.

    CAS  PubMed  Google Scholar 

  42. Rushton HG, Majd M, Chandra R, et al. Evaluation of 99mTc-DMSA renal scan in experimental acute pyelonephritis in piglets. J Urol. 1998;140:1169–74.

    Google Scholar 

  43. Verboven M, Ingels M, Delree M, et al. 99mTc-DMSA scintigraphy in acute UTI in children. Pediatr Radiol. 1990;20:540–2.

    Article  CAS  PubMed  Google Scholar 

  44. Tarkington M, Fildes RD, Levin K, et al. High resolution SPECT 99mTC-DMSA renal imaging: a state of the art technique. J Urol. 1990;144:598–600.

    CAS  PubMed  Google Scholar 

  45. Peters C, Mandell J, Treves T, et al. The “well tempered” diuretic renogram: a standard method to examine the asymptomatic neonate with hydronephrosis or hydroureteronephrosis. J Nucl Med. 1992;33(11):2047–51.

    Google Scholar 

  46. Mandell GA, Cooper JA, Leonard JC, et al. Procedure guidelines for diuretic renography in children. J Nucl Med. 1997;38(10):1647–9.

    CAS  PubMed  Google Scholar 

  47. Lythgoe MF, Gordon I, Anderson PJ. The effect of renal maturation on the clearance of 99mTc-MAG3. Eur J Nucl Med. 1994;21(12):1332–7.

    Article  Google Scholar 

  48. Gordon I, Piepsz A, Sixt R. Guidelines for standard and diuretic renogram in children. Eur J Nucl Med. 2011;38:1175–88.

    Article  Google Scholar 

  49. Nguyen HT, Gluckman GR, Kogan BA. Changing the technique of background subtraction alters calculated renal function on pediatric MAG3 renography. J Urol. 1997;158:1252–6.

    Article  CAS  PubMed  Google Scholar 

  50. Ozcan Z, Anderson PJ, Gordon I. Robustness of estimation of differential renal function in infants and children with unilateral prenatal diagnosis of a hydronephrotic kidney on dynamic renography: how real is the supranormal kidney? Eur J Nucl Med Mol Imaging. 2006;33(6):738–44.

    Article  PubMed  Google Scholar 

  51. Oh SJ, Moon DH, Kang WC, et al. Supranormal differential renal function is real but May Be pathological: assessment by99mTechnetium mercaptoacetyltriglycine renal scan of congenital unilateral hydronephrosis. J Urol. 2001;165:2300–4.

    Article  CAS  PubMed  Google Scholar 

  52. Capolicchio G, Jednak R, Dinh L, et al. Supranormal renographic differential function in congenital hydronephrosis: fact, not artifact. J Urol. 1999;161:1290.

    Article  CAS  PubMed  Google Scholar 

  53. Inanir S, Biykli N, Caliskan B, et al. Contradictory supranormal function in hydronephrotic kidneys: fact or artifact on pediatric MAG3 renal scans? Clin Nucl Med. 2005;30(2):91–6.

    Article  PubMed  Google Scholar 

  54. Gungor F, Anderson P, Gordon I. Effect of the size of regions of interest on the estimation of differential renal function in children with congenital hydronephrosis. Nucl Med Commun. 2002;23:147–51.

    Article  CAS  PubMed  Google Scholar 

  55. Piepsz A. Antenatal detection of pelviureteric junction stenosis: main controversies. Semin Nucl Med. 2011;41:11–9.

    Article  PubMed  Google Scholar 

  56. O’Reilly PH, Testa HJ, Lawson RS, et al. Diuresis renography in equivocal urinary tract obstruction. Br J Urol. 1978;50:76–80.

    Article  PubMed  Google Scholar 

  57. O’Reilly PH, Lawson RS, Shields RA, et al. Idiopathic hydronephrosis-the diuresis renogram: a New Non-invasive method of assessing equivocal pelvioureteral junction obstruction. J Urol. 1979;121:153–5.

    PubMed  Google Scholar 

  58. Ransley PG, Dhillon HK, Gordon I, et al. The postnatal management of hydronephrosis diagnosed by prenatal ultrasound. J Urol. 1990;144:584.

    CAS  PubMed  Google Scholar 

  59. Ulman I, Jayanthi VR, Koff SA. The long-term follow-up of newborns with severe unilateral hydronephrosis initially treated nonoperatively. J Urol. 2000;164:1101–5.

    Article  CAS  PubMed  Google Scholar 

  60. Ross SS, Kardos S, Krill A, et al. Observation of infants with SFU grades 3–4 hydronephrosis: worsening drainage with serial diuresis renography indicates surgical intervention and helps prevent loss of renal function. J Pediatr Urol. 2011;7:266–71.

    Article  PubMed  Google Scholar 

  61. Rossleigh MA, Thomas MY, Moase AL. Determination of the normal range of furosemide half-clearance times when using MAG3. Clin Nucl Med. 1994;19:880–2.

    Article  CAS  PubMed  Google Scholar 

  62. Rossleigh MA, Leighton DM, Farnsworth RH. Diuretic renography: the need for an additional view after gravity assisted drainage. Clin Nucl Med. 1993;18:210–13.

    Article  CAS  PubMed  Google Scholar 

  63. Wong DC, Rossleigh MA, Farnsworth RH. Diuretic renography with the addition of quantitative gravity-assisted drainage in infants and children. J Nucl Med. 2000;41(6):1030–6.

    CAS  PubMed  Google Scholar 

  64. Chaiwatanarat T, Padhy AK, Bomaji JB, et al. Validation of renal output efficiency as an objective parameter in the evaluation of upper urinary tract obstruction. J Nucl Med. 1993;34(5):845–8.

    CAS  PubMed  Google Scholar 

  65. Saunders CAB, Choong KL, Larcos G, et al. Assessment of pediatric hydronephrosis using output efficiency. J Nucl Med. 1997;38(9):1483–6.

    CAS  PubMed  Google Scholar 

  66. Piepsz A, Tondeur M, Ham H. NORA: a simple and reliable parameter for estimating renal output with or without furosemide challenge. Nucl Med Commun. 2000;21:317–23.

    Article  CAS  PubMed  Google Scholar 

  67. Piepsz A, Kuyvenhoven JD, Tondeur M, et al. Normalized residual activity: usual values and robustness of the method. J Nucl Med. 2002;43(1):33–8.

    PubMed  Google Scholar 

  68. Nimmon CC, Samal M, Britton KE. Elimination of total renal function on renal output efficiency and normalized residual activity. J Nucl Med. 2004;45(4):587–93.

    PubMed  Google Scholar 

  69. Winter CC. A new test for vesicoureteral reflux: an external technique using radioisotopes. J Urol. 1959;81:105–11.

    CAS  PubMed  Google Scholar 

  70. Ellison JS, Maxfield CM, Wiener JM. Voiding cystography practices of North American pediatric urologists. J Urol. 2009;182:299–305.

    Article  PubMed  Google Scholar 

  71. Wilkinson AG. Percutaneous direct radionuclide cystography in children: description of technique and early experience. Pediatr Radiol. 2002;32:511–17.

    Article  PubMed  Google Scholar 

  72. Mandell GA, Eggli DF, Gilday DL, et al. Procedure guideline for radionuclide cystography in children. J Nucl Med. 1997;38(10):1650–4.

    CAS  PubMed  Google Scholar 

  73. McLaren CJ, Simpson ET. Direct comparison of radiology and nuclear medicine cystograms in young infants with vesico-ureteral reflux. BJU Int. 2001;87:93–7.

    Article  CAS  PubMed  Google Scholar 

  74. Mozley PD, Heyman S, Duckett JW, et al. Direct vesicoureteral scintigraphy: quantifying early outcome predictors in children with primary reflux. J Nucl Med. 1994;35(10):1602–8.

    CAS  PubMed  Google Scholar 

  75. Jose TE, Mohiudheen H, Patel C, et al. Direct radionuclide cystography by suprapubic puncture: comparison with voiding cystourethrography. Nucl Med Commun. 2004;25(4):383–5.

    Article  PubMed  Google Scholar 

  76. Nasrallah PF, Nara S, Crawford J. Clinical applications of nuclear cystography. J Urol. 1982;128:550–3.

    CAS  PubMed  Google Scholar 

  77. Sukan A, Bayazit AK, Kibar M, et al. Comparison of direct radionuclide cystography and voiding direct cystography in the detection of vesicoureteral reflux. Ann Nucl Med. 2003;17(7):549–53.

    Article  PubMed  Google Scholar 

  78. Kogan SJ, Sigler L, Levitt SB, et al. Elusive vesicoureteral reflux in children with normal contrast cystograms. J Urol. 1986;136:325–8.

    CAS  PubMed  Google Scholar 

  79. McLaren CJ, Simpson ET. Vesico-ureteral reflux in the young infant with follow-up direct radionuclide cystograms: the medical and surgical outcome at 5 years old. BJU Int. 2002;90:721–4.

    Article  CAS  PubMed  Google Scholar 

  80. Conway JJ. Kruglik. Effectiveness of direct and indirect radionuclide cystography in detecting vesicoureteral reflux. J Nucl Med. 1976;17(2):81–3.

    CAS  PubMed  Google Scholar 

  81. Merrick MV, Uttley WS, Wild R. A comparison of Two techniques in detecting vesicoureteral reflux. Br J Radiol. 1979;50:792–5.

    Article  Google Scholar 

  82. Nielsen JB, Jensen FT, Munch JT, et al. The diagnosis of VUR- radiologic and nuclear medicine methods. Scand J Urol Nephrol. 1985;19:109–12.

    Article  CAS  PubMed  Google Scholar 

  83. Carlsen O, Lukman B, Nathan E. Indirect radionuclide reno-cystography for determination of vesicoureteral reflux in children. Eur J Nucl Med. 1986;12:205–10.

    Article  CAS  PubMed  Google Scholar 

  84. Chapman SJ, Chantler C, Haycock GB, et al. Radionuclide cystography in vesicoureteral reflux. Arch Dis Child. 1988;63:650–1.

    Article  CAS  PubMed  Google Scholar 

  85. Gordon I, Peters M, Morony S. Indirect radionuclide cystography: a sensitive technique for the detection of vesico-ureteral reflux. Pediatr Nephrol. 1990;4:604–6.

    Article  CAS  PubMed  Google Scholar 

  86. DeSadeleer C, DeBoe V, Desprechins B, et al. How good is 99mTc-MAG3 indirect cystography? Eur J Nucl Med. 1994;21(3):223–7.

    CAS  Google Scholar 

  87. Nadel NS, Gitter MH, Hahn LC, et al. Pre-operative diagnosis of testicular torsion. Urology. 1973;1:478.

    Article  CAS  PubMed  Google Scholar 

  88. Gadd R, Mountford PJ, Oxtoby JW. Effective dose to children and adolescents from radiopharmaceuticals. Nucl Med Commun. 1999;20:569.

    Article  CAS  PubMed  Google Scholar 

  89. Fotakis M, Athansopoulou EM, Psarrakos K, et al. Radiation doses to paediatric patients up to 5 years of age undergoing micturating cystourethrography examinations and its dependence on patient age: a Monte Carlo study. BR J Radiol. 2003;76:812.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron J. Krill MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Krill, A.J., Palestro, C.J. (2014). Principles of Nuclear Medicine Imaging. In: Palmer, L., Palmer, J. (eds) Pediatric and Adolescent Urologic Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8654-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8654-1_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8653-4

  • Online ISBN: 978-1-4614-8654-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics