Skip to main content

Role of Molecular Markers

  • Chapter
  • First Online:
Alien Gene Transfer in Crop Plants, Volume 1

Abstract

Over the past two decades tremendous progress has been made in the area of genomics of crop plants, especially evolution of large number of high-throughput cost effective molecular markers and genotyping platforms which have helped to identify, map, and introgress alien genes from the wild backgrounds. The alien genes once mapped have been introgressed into cultivated crop plants through marker-assisted backcrossing (MABC) for improving biotic and abiotic stresses in major crop species including rice, wheat, chickpea, cotton, tomato, etc. Molecular markers associated with favorable alien QTL of wild species have an important role in introgression and tracing of these QTL during their transfer into the background of cultivated species. Thus these have become important for exploitation of alien genes in crop improvement. This chapter discusses the role of molecular markers in crop improvement through alien gene transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbo S, Molina C, Jungmann R, Grusa KA, Berkovitch Z, Reifen R, Kahl G, Winter P, Reifen R (2005) Quantitative trait loci governing carotenoid concentration and weight in seeds of chickpea (Cicer arietinum L.). Theor Appl Genet 111:185–195

    Article  PubMed  CAS  Google Scholar 

  • Allard RW (1999) Principles of plant breeding. Wiley, New York

    Google Scholar 

  • Alpert KA, Grandillo S, Tanksley SD (1995) fw2.2: a major QTL controlling fruit weight is common to both red- and green-fruited tomato species. Theor Appl Genet 91:994–1000

    PubMed  CAS  Google Scholar 

  • Amante-Bordeos A, Sitch LA, Nelson R, Dalmacio RD, Oliva NP, Aswidinnoor H (1992) Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice. Theor Appl Genet 84:345–354

    Google Scholar 

  • Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S (1998) Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97:381–397

    Article  CAS  Google Scholar 

  • Brar DS, Khush GS (1997) Alien introgression in rice. Plant Mol Biol 35:35–47

    Article  PubMed  CAS  Google Scholar 

  • Brar DS, Khush GS (2002) Transferring genes from wild species into rice. In: Kang MS (ed) Quantitative genetics, genomics and plant breeding. CABI, Wallingford, pp 197–217

    Google Scholar 

  • Brar DS, Singh K (2011) Oryza. In: Kole C (ed) Wild crop relatives: genomics and breeding resources, cereals. Springer, Berlin, Heidelberg, pp 321–365

    Chapter  Google Scholar 

  • Brar DS, Dalmacio R, Elloran R, Aggarwal R, Angeles R, Khush GS (1996) Gene transfer and molecular characterization of introgression from wild Oryza species into rice. In: Khush GS (ed) Rice genetics III. IRRI, Manila, Philippines, pp 477–486

    Google Scholar 

  • Cao A, Xing L, Wang X, Yang X, Wang W (2011) Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci U S A 108:7727–7732

    Article  PubMed  CAS  Google Scholar 

  • Chee P, Draye X, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH (2005a) Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: I. Fiber elongation. Theor Appl Genet 111:757–763

    Article  PubMed  CAS  Google Scholar 

  • Chee P, Draye X, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH (2005b) Molecular dissection of phenotypic variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: III. Fiber length. Theor Appl Genet 111:772–781

    Article  PubMed  CAS  Google Scholar 

  • Cheema KK, Navtej SB, Mangat GS, Das A, Vikal Y, Brar DS, Khush GS, Singh K (2008a) Development of high yielding IR64 × Oryza rufipogon (Griff.) introgression lines and identification of introgressed alien chromosome segments using SSR markers. Euphytica 160:401–409

    Article  CAS  Google Scholar 

  • Cheema KK, Grewal NK, Vikal Y, Das A, Sharma R, Lore JS (2008b) A novel bacterial blight resistance gene from Oryza nivara mapped to 38 Kbp region on chromosomes 4L and transferred to O. Sativa L. Genet Res 90:397–407

    Article  CAS  Google Scholar 

  • Chhuneja P, Kaur S, Goel RK, Aghaee-Sarbarzeh M, Prashar M, Dhaliwal HS (2008a) Transfer of leaf rust and stripe rust resistance from Aegilopes umbellulata Zhuk. to bread wheat (Triticum aestivum L.). Genet Resour Crop Evol 55:849–859

    Article  Google Scholar 

  • Chhuneja P, Kaur S, Garg T, Ghai M, Kaur S, Prashar M, Bains NS, Goel RK, Keller B, Dhaliwal HS, Singh K (2008b) Mapping of adult plant stripe rust resistance genes in diploid A genome wheat species and their transfer to bread wheat. Theor Appl Genet 116:313–324

    Article  PubMed  CAS  Google Scholar 

  • Chhuneja P, Kumar K, Strinweis D, Hurni S, Keller B, Dhaliwal HS, Singh K (2012) Identification and mapping of two powdery mildew resistance genes in Triticum boeoticum L. Theor Appl Genet 124:1051–1058

    Article  PubMed  CAS  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Genet 12:499–510

    Article  CAS  Google Scholar 

  • deVicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596

    PubMed  CAS  Google Scholar 

  • Doi K, Sobrizal, Ikeda K, Sanchez PL, Kurakazu T, Nagai Y (2003) Developing and evaluating rice chromosome segment substitution lines. In: Mew TW, Brar DS, Peng S, Dawe D, Hardy H (eds) Rice science: innovation and impact on livelihood. International Rice Research Institute and CASE and CAAS, Beijing, China, pp 289–296

    Google Scholar 

  • Draye X, Chee P, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH (2005) Molecular dissection of interspecific variation between Gossypium hirsutum and G. barbadense (cotton) by a backcross-self approach: II. Fiber fineness. Theor Appl Genet 111: 764–771

    Article  PubMed  CAS  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    PubMed  CAS  Google Scholar 

  • Eyre-Walker A, Gaut RL, Hilton H, Feldman DL, Gaut BS (1998) Investigation of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci U S A 95:4441–4446

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Fulton TM, Zamir D, Tanksley SD (2004) Advanced backcross QTL analysis of a Lycopersicon esculentum × L. Pennellii cross and identification of possible orthologs in the Solanaceae. Theor Appl Genet 108:485–496

    Article  PubMed  CAS  Google Scholar 

  • Frey KJ, Cox TS, Rodgers DM, Bramel-Cox P (1984) Increasing cereal yields with genes from wild and weedy species. In Chopra VL et al (eds), Proceedings of the XV international congress of genetics, vol IV (Genetics, new frontiers). pp 51–68

    Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Frisch M, Bohn M, Melchinger AE (1999) Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci 39:1295–1301

    Article  Google Scholar 

  • Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 95:881–894

    Article  CAS  Google Scholar 

  • Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton A, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum × Lycopersicon parviflorum cross. Theor Appl Genet 100:1025–1042

    Article  CAS  Google Scholar 

  • Gill BS, Bernd RF, Frank F (2011) Alien introgressions represent a rich source of genes for crop improvement. Proc Natl Acad Sci U S A 108:7657–7658

    Article  PubMed  CAS  Google Scholar 

  • Gu K, Tian K, Yang F, Wu L, Sreekala C, Wang D, Wang GL, Yin Z (2004) High-resolution genetic mapping of Xa27(t), a new bacterial blight resistance gene in rice, Oryza sativa L. Theor Appl Genet 108:800–807

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  • Gupta PK, Varshney RK, Prasad M (2002) Molecular markers: principles and methodology. In: Jain SM, Ahloowalia BS, Brar DS (eds) Molecular techniques in crop improvement. Kluwer Academic Publishers, Netherlands, pp 9–54

    Chapter  Google Scholar 

  • Gupta PK, Rustagi S, Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101:5–18

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Rustgi S, Mir RR (2013) Array-based high-throughput DNA markers and genotyping platforms for cereal genetics and genomics. In: Gupta PK, Varshney RK (eds) Cereal genomics II. Springer, Berlin, Heidelberg, pp 11–55

    Chapter  Google Scholar 

  • Hirabayashi H, Kaji R, Okamoto M, Ogawa T, Brar DS, Angeles ER (2003) Mapping QTLs for brown plant hopper (BPH) resistance introgressed from O. Officinalis in rice. In: Khush GS, Brar DS, Hardy B (eds) Advances in rice genetics. International Rice Research Institute, Manila, Philippines, pp 268–270

    Google Scholar 

  • Huang XQ, Cöster H, Ganal MW, Röder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389

    PubMed  CAS  Google Scholar 

  • Huang XQ, Kempf H, Ganal MW, Röder MS (2004) Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet 109:933–943

    Article  PubMed  CAS  Google Scholar 

  • Ishii T, Brar DS, Multani DS, Khush GS (1994) Molecular tagging of genes for brown planthopper resistance and earliness introgressed from Oryza australiensis into cultivated rice O. sativa. Genome 37:217–221

    Article  PubMed  CAS  Google Scholar 

  • Jena KK, Khush GS, Kochert G (1992) RFLP analysis of rice (Oryza sativa L) introgression lines. Theor Appl Genet 84: 608−616

    Google Scholar 

  • Jena KK, Jeung JU, Lee JH, Choi HC, Brar DS (2006) High-resolution mapping of a new brown plant hopper (BPH) resistance gene, Bph18(t), and marker-assisted selection for BPH resistance in rice (Oryza sativa L.). Theor Appl Genet 112:288–297

    Article  PubMed  CAS  Google Scholar 

  • Jeung JU, Kim BR, Cho YC, Han SS, Moon HP, Lee YT, Jena KK (2007) A novel gene, Pi40(t) linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theor Appl Genet 115:1163–1177

    Article  PubMed  CAS  Google Scholar 

  • Jones SS, Murray TD, Allan RE (1995) The development of disease resistance in wheat. Annu Rev Phytopathol 33:429–443

    Article  PubMed  CAS  Google Scholar 

  • Kabelka E, Yang W, Francis DM (2004) Improved tomato fruit within an inbred backcross line derived from Lycopersicon esculentum and L. hirsutum involves the interaction of loci. J Am Soc Hortic Sci 129:250–257

    CAS  Google Scholar 

  • Khush GS, Ling KC, Aquino RC, Aquiero VM (1977) Breeding for resistance to grassy stunt in rice. In: Proceedings of 3rd International Congr. SABRAO. Plant Breeding Papers 1[4] Canberra, Australia, pp 3–9

    Google Scholar 

  • Khush GS, Bacalangco E, Ogawa T (1990) A new gene for resistance to bacterial blight from O. longistaminata. Rice Genet Newsl 7:121–122

    Google Scholar 

  • Kunert A, Naz AA, Dedeck O, Pillen K, Léon J (2007) AB-QTL analysis in winter wheat: I. Synthetic hexaploid wheat (T. turgidum ssp. dicoccoides × T. tauschii) as a source of favourable alleles for milling and baking quality traits. Theor Appl Genet 115:683–695

    Article  PubMed  CAS  Google Scholar 

  • Kuraparthy V, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007a) Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114:1379–1389

    Article  PubMed  CAS  Google Scholar 

  • Kuraparthy V, Sood S, Guedira GB, Gill BS (2011) Development of a PCR assay and marker-assisted transfer of leaf rust resistance gene Lr58 into adapted winter wheats. Euphytica 180:227–234

    Article  Google Scholar 

  • Kuraparthy V, Soodae S, Chhunejabe P, Dhaliwal HS, Kaura S, Bowdend RL, Gill BS (2007b) A cryptic wheat—Aegilops triuncialis translocation with leaf rust resistance gene Lr58. Crop Sci 47:1995–2003

    Article  CAS  Google Scholar 

  • Langridge P, Chalmers K (2004) The principle: identification and application of molecular markers. In: Lorz H, Wenzel G (eds) Biotechnology in agriculture and forestry, molecular marker systems in plant breeding and crop improvement. Springer, Berlin, Heidelberg, pp 129–149

    Google Scholar 

  • Lawrence PK, Frey KJ (1975) Backcross variability for grain yield in oat species crosses (Avena sativa L. × Avena sterilis L.). Euphytica 24:77–85

    Article  Google Scholar 

  • Lin SC, Yuan LP (1980) A mass screening method for testing grassy stunt disease of rice. Hybrid rice breeding in China. In: Innovative approaches to rice improvement. International Rice Research Institute, Manila, Philippines, pp 35–51

    Google Scholar 

  • Madrid E, Rubiales D, Moral A, Moreno MT, Millan T, Gil J, Rubio J (2008) Mechanism and molecular markers associated with rust resistance in a chickpea interspecific cross (Cicer arietinum × Cicer eticulatum). Eur J Plant Pathol 121:43–53

    Article  CAS  Google Scholar 

  • Mallikarjuna N, Senapathy S, Jadhav DR, Saxena KB, Sharma HC, Upadhyaya HD, Rathore A, Varshney RK (2011) Progress in the utilization of Cajanus platycarpus (Benth.) Maesen in pigeonpea improvement. Plant Breed 130:507–514

    Article  CAS  Google Scholar 

  • Marri PR, Sarla N, Reddy LV, Siddiq EA (2005) Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon. BMC Genet 6:1471–2156

    Article  Google Scholar 

  • Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448

    CAS  Google Scholar 

  • Mir RR, Varshney RK (2013) Future prospects of molecular markers in plants. In: Henry RJ (ed) Molecular markers in plants. Blackwell Publishing Ltd., Oxford

    Google Scholar 

  • Mir RR, Hiremath PJ, Riera-Lizarazu O, Varshney RK (2013) Evolving molecular marker technologies in plants: from RFLPs to GBS. In: Lübberstedt T, Varshney RK (eds) Diagnostics in plant breeding. Springer, Berlin, Heidelberg, pp 229–247

    Chapter  Google Scholar 

  • Narasimhamoorthy B, Gill BS, Fritz AK, Nelson JC, Brown-Guedira GL (2006) Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet 112:787–796

    Article  PubMed  CAS  Google Scholar 

  • Naz AA, Kunert A, Lind V, Pillen K, Léon J (2008) AB-QTL analysis in winter wheat: II. Genetic analysis of seedling and field resistance against leaf rust in a wheat advanced backcross population. Theor Appl Genet 116:1095–1104

    Article  PubMed  CAS  Google Scholar 

  • Neelam K, Rawat N, Tiwari V, Kumar S, Chhuneja P, Singh K, Randhawa G, Dhaliwal H (2011) Introgression of group 4 and 7 chromosomes of Aegilopes peregrina in wheat enhances grain iron and zinc density. Mol Breed 28:623–634

    Article  CAS  Google Scholar 

  • Nguyen BD, Brar DS, Bui BC, Nguyen TV, Pham LN, Nguyen HT (2003) Identification and mapping of the QTL for aluminum tolerance introgressed from new source, Oryza rufipogon Griff. in to indica rice, (Oryza sativa L.). Theor Appl Genet 106:583–593

    PubMed  CAS  Google Scholar 

  • Pillen K, Zacharias A, Léon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352

    Article  PubMed  CAS  Google Scholar 

  • Rao GU, Ben Chaim A, Borovsky Y, Paran I (2003) Mapping of yield-related QTLs in pepper in an interspecific cross of Capsicum annuum and C. frutescens. Theor Appl Genet 106:1457–1466

    PubMed  CAS  Google Scholar 

  • Reeves RG, Bockholt AJ (1964) Modification and improvement of maize inbred by crossing it with Tripsacum. Crop Sci 4:7–10

    Article  Google Scholar 

  • Rehman ML, Jiang W, Chu SH, Qiao Y, Ham TH, Woo MO (2009) High resolution mapping of two rice brown plant hopper resistance genes, Bph20(t) and Bph21(t), originating from Oryza minuta. Theor Appl Genet 119:1237–1244

    Article  Google Scholar 

  • Reif JC, Zhang P, Dreisigacker S, Warburton ML, van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2005) Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet 110:859–864

    Article  PubMed  CAS  Google Scholar 

  • Riar AK, Kaur S, Dhaliwal HS, Singh K, Chhuneja P (2012) Introgression of a leaf rust resistance gene from Aegilopes Caudata to bread wheat. J Genet 91:1–7

    Article  Google Scholar 

  • Rick CM (1974) High soluble-solids content in large fruited tomato lines derived from a wild green-fruited species. Hilgardia 42:493

    Google Scholar 

  • Robert, Prescott-Alen C (1983) Genes from the wild. Russel Press, Nottingham, p 95

    Google Scholar 

  • Ronald PC, Albano B, Tabien R, Abenes L, Wu K, McCouch S (1992) Genetic and physical analysis of rice bacterial blight resistance locus, Xa21. Mol Gen Genet 236:113–120

    PubMed  CAS  Google Scholar 

  • Ross H (1979) Wild species and primitive cultivars as ancestors of potato varieties. In: Zeven AC, van Harten AM (eds) Proceedings of the conference broadening the genetic base of crops, Pudoc, Wageningen, pp 237–245

    Google Scholar 

  • Santra DK, Tekeoglu M, Ratnaparkhe M, Kaiser WJ, Muehlbauer FJ (2000) Identification and mapping of QTLs conferring resistance to Ascochyta blight in chickpea. Crop Sci 40:1606–1612

    Article  CAS  Google Scholar 

  • Septiningsih EM, Pratsetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003a) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1419–1432

    Article  PubMed  CAS  Google Scholar 

  • Septiningsih EM, Trijatmiko KR, Moeljopawiro S, McCouch SR (2003b) Identification of quantitative trait loci for quality in an advanced backcross population derived from Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1433–1441

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Xu S, Ehdaie B, Hoops A, Close TJ, Lukaszewaki AJ, Waines JG (2011) Dissection of QTL effects for root traits using a chromosome arm-specific mapping population in bread wheat. Theor Appl Genet 122:759–769

    Article  PubMed  Google Scholar 

  • Singh KB, Ocampo B (1997) Exploitation of wild Cicer species for yield improvement in chickpea. Theor Appl Genet 95:418–423

    Article  Google Scholar 

  • Singh K, Chhuneja P, Singh I, Sharma SK, Garg T, Garg M, Keller B, Dhaliwal HS (2010) Molecular mapping of cereal cyst nematode resistance in Triticum monococcum L. and its transfer to the genetic background of cultivated wheat. Euphytica 176:213–222

    Article  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi YL, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase like protein encoded by the rice disease resistance gene, Xa-21. Science 270:1804–1806

    Article  PubMed  CAS  Google Scholar 

  • Stegemann H, Loeschcke V (1979) Index of European potato varieties: identification by electrophoretic spectra, national registers, appraisal of characteristic, genetic data. Mitteilungen aus der Biologischen Bundesanstalt fur Land-und Forstwirtschaft, Braunschweig, p 233

    Google Scholar 

  • Stevens R, Buret M, Duffé P, Garchery C, Baldet P, Rothan C, Causse M (2007) Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiol 143:1943–1953

    Article  PubMed  CAS  Google Scholar 

  • Swamy BPM, Sarla N (2008) Yield-enhancing quantitative trait loci (QTLs) from wild species. Biotechnol Adv 26:106–120

    Article  PubMed  CAS  Google Scholar 

  • Swamy BPM, Kaladhar K, Rani NS, Prasad GSV, Viraktamath BC, Reddy GA, Sarla N (2012) QTL analysis for grain quality traits in 2 BC2F2 populations derived from crosses between Oryza sativa cv swarna and 2 accessions of O. nivara. J Hered 103:442–452

    Article  PubMed  CAS  Google Scholar 

  • Tan GX, Ren X, Weng QM, Shi ZY, Zhu LL, He GC (2004a) Mapping of a new resistance gene to bacterial blight in rice line introgressed from O. officinalis. Yi Chuan Xue Bao 31:724–729

    PubMed  CAS  Google Scholar 

  • Tan G, Weng QM, Ren X, Huang Z, Zhu LL, He GC (2004b) Two whitebacked planthopper resistance genes in rice share the same loci with those for brown planthopper resistance. Heredity 92:212–217

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Nat Biotechnol 7:257–264

    Article  CAS  Google Scholar 

  • Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224

    Article  PubMed  CAS  Google Scholar 

  • Tekeoglu M, Rajesh PN, Muehlbauer FJ (2002) Integration of sequence tagged microsatellite sites to chickpea genetic map. Theor Appl Genet 105:847–854

    Article  PubMed  CAS  Google Scholar 

  • Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga EM, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rupogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493

    Article  PubMed  CAS  Google Scholar 

  • Tiwari VK, Rawat N, Chhuneja P, Neelam K, Aggarwal R, Randhawa GS, Dhaliwal HS, Keller B, Singh K (2009) Mapping of quantitative trait loci for grain iron and zinc concentration in diploid a genome wheat. J Hered 100:771–776

    Article  PubMed  CAS  Google Scholar 

  • Tiwari VK, Rawat N, Neelam K, Kumar S, Randhawa GS, Dhaliwal HS (2010) Substitutions of 2S and 7U chromosomes of Aegilops kotschyi in wheat enhance grain iron and zinc concentration. Theor Appl Genet 121:259–269

    Article  PubMed  CAS  Google Scholar 

  • Van Heusden AW, Koornneef M, Voorrips RE, Bruggenman W, Pet G, Vrielink van Gingel R, Chen X, Lindhout P (1999) Three QTLs from Lycopersicon peruvianum confer a high level of reistance to Clavibacter michiganensis. Theor Appl Genet 99:1068–1074

    Article  Google Scholar 

  • Von Korff M, Wang H, Léon J, Pillen K (2005) AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet 111:583–590

    Article  Google Scholar 

  • Von Korff M, Wang H, Léon J, Pillen K (2006) AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 112:1221–1231

    Article  Google Scholar 

  • Von Korff M, Wang H, Léon J, Pillen K (2008) AB-QTL analysis in spring barley: III. Identification of exotic alleles for the improvement of malting quality in spring barley (H. vulgare ssp. spontaneum). Mol Breed 21:81–93

    Article  Google Scholar 

  • Wang ZY, Second G, Tanksley SD (1992) Polymorphism and phylogenetic relationships among species in the genus Oryzae as determined by analysis of nuclear RFLPs. Theor Appl Genet 83:565–581

    Article  Google Scholar 

  • Xiao J, Li J, Grandillo S, Ahn S, Yuan L, McCouch SR, Tanksley SD (1996) Genes from wild rice improve yield. Nature 384:223–224

    Article  CAS  Google Scholar 

  • Xiao J, Li J, Grandillo S, Ahn S, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909

    PubMed  CAS  Google Scholar 

  • Xie X, Jin F, Song MH, Suh JP, Hwang HG, Kim YG, McCouch SR, Ahn SN (2008) Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet 116:613–622

    Article  PubMed  Google Scholar 

  • Yoon DB, Kang KH, Kim HJ, Ju HG, Kwon SJ, Suh JP, Jeong OY, Ahn SN (2006) Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseongbyeo. Theor Appl Genet 112:1052–1062

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Lin SC, Zhao BY, Wang CL, Wang WC, Zhou YL (1998) Identification and tagging of a new gene for resistance to bacterial blight (Xanthomonas oryzae pv. oryzae) from O.rufipogon. Rice Genet Newsl 15:138–142

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reyazul Rouf Mir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mir, R.R. et al. (2014). Role of Molecular Markers. In: Pratap, A., Kumar, J. (eds) Alien Gene Transfer in Crop Plants, Volume 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8585-8_7

Download citation

Publish with us

Policies and ethics