Skip to main content

Noninvasive Cardiac Output Monitoring

  • Chapter
  • First Online:
Monitoring Technologies in Acute Care Environments

Abstract

Less invasive cardiac output monitors have been developed as alternative to thermodilution-based cardiac output measurements from pulmonary artery catheters. These include Doppler-based methods, bioimpedance and bioreactance, pulse contour analysis, partial rebreathing, and pulse wave velocity. Currently available technologies differ in their underlying physical principles but also in their risks and accuracy of measurements. While less invasive devices are appealing for clinical use and have clinical utility, further studies are needed to determine their ability to positively impact meaningful patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Suggested Reading

  • Aars H. Diameter and elasticity of the ascending aorta during infusion of noradrenaline. Acta Physiol Scand. 1971;83(1):133–8.

    Article  PubMed  CAS  Google Scholar 

  • Benatar SR, Hewlett AM, Nunn JF. The use of iso-shunt lines for control of oxygen therapy. Br J Anaesth. 1973;45(7):711–8.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein DP. A new stroke volume equation for thoracic electrical bioimpedance: theory and rationale. Crit Care Med. 1986;14(10):904–9.

    Article  PubMed  CAS  Google Scholar 

  • Boehmer RD. Continuous, real-time, noninvasive monitor of blood pressure: Penaz methodology applied to the finger. J Clin Monit. 1987;3(4):282–7.

    PubMed  CAS  Google Scholar 

  • Chaney JC, Derdak S. Minimally invasive hemodynamic monitoring for the intensivist: current and emerging technology. Crit Care Med. 2002;30(10):2338–45.

    Article  PubMed  Google Scholar 

  • Gan TJ, Soppitt A, Maroof M, el-Moalem H, Robertson KM, Moretti E, et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97(4):820–6.

    Article  PubMed  Google Scholar 

  • Greene ES, Gerson JI. Arterial pulse wave velocity: a limited index of systemic vascular resistance during normotensive anesthesia in dogs. J Clin Monit. 1985;1(4):219–26.

    Article  PubMed  CAS  Google Scholar 

  • Gurgel ST, do Nascimento Jr P. Maintaining tissue perfusion in high-risk surgical patients: a systematic review of randomized clinical trials. Anesth Analg. 2011;112(6):1384–91.

    Article  PubMed  Google Scholar 

  • Hamilton W, Remington J, Dow P. The determination of the propagation velocity of the arterial pulse wave. Am J Physiol. 1945;144:521–35.

    Google Scholar 

  • Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg. 2011;112(6):1392–402.

    Article  PubMed  Google Scholar 

  • Haryadi DG, Orr JA, Kuck K, McJames S, Westenskow DR. Partial CO2 rebreathing indirect Fick technique for non-invasive measurement of cardiac output. J Clin Monit Comput. 2000;16(5–6):361–74.

    Article  PubMed  CAS  Google Scholar 

  • Imholz BP, Wieling W, van Montfrans GA, Wesseling KH. Fifteen years experience with finger arterial pressure monitoring: assessment of the technology. Cardiovasc Res. 1998;38(3):605–16.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara H, Okawa H, Tanabe K, Tsubo T, Sugo Y, Akiyama T, et al. A new non-invasive continuous cardiac output trend solely utilizing routine cardiovascular monitors. J Clin Monit Comput. 2004;18(5–6):313–20.

    Article  PubMed  Google Scholar 

  • Jaffe MB. Partial CO2 rebreathing cardiac output–operating principles of the NICO system. J Clin Monit Comput. 1999;15(6):387–401.

    Article  PubMed  CAS  Google Scholar 

  • Keren H, Burkhoff D, Squara P. Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. Am J Physiol Heart Circ Physiol. 2007;293(1):H583–9.

    Article  PubMed  CAS  Google Scholar 

  • Kubicek WG, Kottke J, Ramos MU, Patterson RP, Witsoe DA, Labree JW, et al. The Minnesota impedance cardiograph-theory and applications. Biomed Eng. 1974;9(9):410–6.

    PubMed  CAS  Google Scholar 

  • McGrath SP, Ryan KL, Wendelken SM, Rickards CA, Convertino VA. Pulse oximeter plethysmographic waveform changes in awake, spontaneously breathing, hypovolemic volunteers. Anesth Analg. 2011;112(2):368–74.

    Article  PubMed  Google Scholar 

  • Nugent AM, McParland J, McEneaney DJ, Steele I, Campbell NP, Stanford CF, et al. Non-invasive measurement of cardiac output by a carbon dioxide rebreathing method at rest and during exercise. Eur Heart J. 1994;15(3):361–8.

    PubMed  CAS  Google Scholar 

  • Nyboer J. Electrical impedance plethysmography; a physical and physiologic approach to peripheral vascular study. Circulation. 1950;2(6):811–21.

    Article  PubMed  CAS  Google Scholar 

  • Starling EH. The Linacre lecture on the law of the heart. London: Longmans, Green, & Company; 1918.

    Google Scholar 

  • Summers RL, Shoemaker WC, Peacock WF, Ander DS, Coleman TG. Bench to bedside: electrophysiologic and clinical principles of noninvasive hemodynamic monitoring using impedance cardiography. Acad Emerg Med. 2003;10(6):669–80.

    Article  PubMed  Google Scholar 

  • Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med. 1970;283(9):447–51.

    Article  PubMed  CAS  Google Scholar 

  • Thiele RH, Colquhoun DA, Patrie J, Nie SH, Huffmyer JL. Relationship between plethysmographic waveform changes and hemodynamic variables in anesthetized, mechanically ventilated patients undergoing continuous cardiac output monitoring. J Cardiothorac Vasc Anesth. 2011;25(6):1044–50.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong J. Gan MD, MHS, FRCA, FFARCS, Lie. j(CJ) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thiele, R.H., Bartels, K., Gan, T.J. (2014). Noninvasive Cardiac Output Monitoring. In: Ehrenfeld, J., Cannesson, M. (eds) Monitoring Technologies in Acute Care Environments. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8557-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8557-5_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8556-8

  • Online ISBN: 978-1-4614-8557-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics