Skip to main content

The Unfolding Story of How General Anesthetics Act

  • Chapter
The Wondrous Story of Anesthesia

Abstract

Soon after Morton’s 1846 demonstration of ether anesthesia, von Bibra and Harless proposed that ether acted by extracting brain lipids. This was followed by the influential theory of Meyer and Overton who proposed that anesthetics acted by directly perturbing membrane lipids. During the 1970s, evidence accumulated suggesting that this theory was wrong and the idea that anesthetics acted by directly binding to proteins began to take hold. This is now the accepted view and subsequent work focused on which proteins were important. There is now a consensus as to which proteins are important for intravenous anesthetics, but uncertainty still exists for the inhaled agents, although the anatomical target for these anesthetics in producing surgical immobility has been shown to be the spinal cord, rather than the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Readers looking for scholarly accounts of anesthetic mechanisms should read the reviews I have cited in the text. What they will find here is a personal account of how the field has changed during the past 35 years from my own, inevitably biased, perspective.

  2. 2.

    This reviewer was not the only person who was unimpressed by our review. We received a letter from Linus Pauling telling us that, in fact, he had solved the problem of how anesthetic acted many years previously (see above).

  3. 3.

    Lieb was a native of Chicago and had a novel, an effective, way of avoiding jet-lag. He simply stayed on Chicago time all his life. He therefore arrived in the lab at around 2 in the afternoon and we would work together until the evening. He would then continue until the early hours when he would write me a letter telling me what he had been up to. This modus operandi persisted for the 30 years that we worked together.

References

  1. Campagna JA, Miller KW, Forman SA. Mechanisms of actions of inhaled anesthetics. N Engl J Med. 2003;348:2110–24.

    Article  CAS  PubMed  Google Scholar 

  2. Franks NP, Lieb WR. Molecular mechanisms of general anaesthesia. Nature. 1982;300:487–93.

    Article  CAS  PubMed  Google Scholar 

  3. Franks NP, Lieb WR. Molecular and cellular mechanisms of general anaesthesia. Nature. 1994;367:607–14.

    Article  CAS  PubMed  Google Scholar 

  4. Rudolph U, Antkowiak B. Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci. 2004;5:709–20.

    Article  CAS  PubMed  Google Scholar 

  5. Sonner JM, Antognini JF, Dutton RC, Flood P, Gray AT, Harris RA, Homanics GE, Kendig J, Orser B, Raines DE, Rampil IJ, Trudell J, Vissel B, Eger EI 2nd. Inhaled anesthetics and immobility: mechanisms, mysteries, and minimum alveolar anesthetic concentration. Anesth Analg. 2003;97:718–40.

    Article  CAS  PubMed  Google Scholar 

  6. Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci. 2008;9:370–86.

    Article  CAS  PubMed  Google Scholar 

  7. Hintzenstern U, Petermann H, Schwarz W. Frühe Erlanger Beiträge zur Theorie und Praxis der Äther- und Chloroformnarkose. Anaesthetist. 2001;50:869–80.

    Article  Google Scholar 

  8. Meyer H. Welche Eigenschaft der Anästhetica bedingt ihre narkotische Wirkung? Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 1899;42:109–18.

    Google Scholar 

  9. Overton E. Studien ĂĽber die Narkose, zugleich ein Beitrag zur allgemeiner Pharmakologie. Jena: Gustav Fischer; 1901.

    Google Scholar 

  10. Meyer K. Contributions to the theory of narcosis. Trans. Faraday Soc. 1937;33:1062–4.

    Article  CAS  Google Scholar 

  11. Henderson VE. The present status of the theories of narcosis. Physiol Rev. 1930;10:171–220.

    CAS  Google Scholar 

  12. Harris TAB. The mode of action of anesthetics. Baltimore: Williams and Wilkins, p. 1951

    Google Scholar 

  13. Merkel G, Eger EI 2nd. A comparative study of halothane and halopropane anesthesia including method for determining equipotency. Anesthesiology. 1963;24:346–57.

    Article  CAS  PubMed  Google Scholar 

  14. Eger EI 2nd, Saidman LJ, Brandstater B. Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiology. 1965;26:756–63.

    Article  PubMed  Google Scholar 

  15. Pauling L. A molecular theory of general anesthesia. Science. 1961;134:15–21.

    Article  CAS  PubMed  Google Scholar 

  16. Miller SL. A theory of gaseous anesthetics. Proc Natl Acad Sci U S A. 1961;47:1515–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Eger EI 2nd, Lundgren C, Miller SL, Stevens WC. Anesthetic potencies of sulfur hexafluoride, carbon tetrafluoride, chloroform and Ethrane in dogs: correlation with the hydrate and lipid theories of anesthetic action. Anesthesiology. 1969;30:129–35.

    PubMed  Google Scholar 

  18. Miller KW, Paton WD, Smith EB. Site of action of general anaesthetics. Nature. 1965;206:574–7.

    Article  CAS  PubMed  Google Scholar 

  19. Miller KW, Paton WD, Smith RA, Smith EB. The pressure reversal of general anesthesia and the critical volume hypothesis. Mol Pharmacol. 1973;9:131–43.

    CAS  PubMed  Google Scholar 

  20. Trudell JR. A unitary theory of anesthesia based on lateral phase separations in nerve membranes. Anesthesiology. 1977;46:5–10.

    Article  CAS  PubMed  Google Scholar 

  21. Bangham AD, Mason WT. Anesthetics may act by collapsing pH gradients. Anesthesiology. 1980;53:135–41.

    Article  CAS  PubMed  Google Scholar 

  22. Franks NP. Structural analysis of hydrated egg lecithin and cholesterol bilayers. I. X-ray diffraction. J Mol Biol. 1976;100:345–58.

    Article  CAS  PubMed  Google Scholar 

  23. Worcester DL, Franks NP. Structural analysis of hydrated egg lecithin and cholesterol bilayers. II. Neutrol diffraction. J Mol Biol. 1976;100:359–78.

    Article  CAS  PubMed  Google Scholar 

  24. Franks NP, Lieb WR. Where do general anaesthetics act? Nature. 1978;274:339–42.

    Article  CAS  PubMed  Google Scholar 

  25. Haydon DA, Hendry BM, Levinson SR, Requena J. The molecular mechanisms of anaesthesia. Nature. 1977;268:356–8.

    Article  CAS  PubMed  Google Scholar 

  26. Boggs JM, Yoong T, Hsia JC. Site and mechanism of anesthetic action. I. Effect of anesthetics and pressure on fluidity of spin-labeled lipid vesicles. Mol Pharmacol. 1976;12:127–35.

    CAS  PubMed  Google Scholar 

  27. Eger EI 2nd, Saidman LJ, Brandstater B. Temperature dependence of halothane and cyclopropane anesthesia in dogs: correlation with some theories of anesthetic action. Anesthesiology. 1965;26:764–70.

    Article  CAS  PubMed  Google Scholar 

  28. Franks NP, Lieb WR. Temperature dependence of the potency of volatile general anesthetics: implications forin vitro experiments. Anesthesiology. 1996;84:716–20.

    Article  CAS  PubMed  Google Scholar 

  29. Miller K, Smith E. Intermolecular forces and the pharmacology of simple molecules. In: Featherstone RA, editors. A guide to molecular pharmacology-toxicology. New York: Marcel Dekker, 1973, pp 427–75.

    Google Scholar 

  30. Eger EI 2nd, Liu J, Koblin DD, Laster MJ, Taheri S, Halsey MJ, Ionescu P, Chortkoff BS, Hudlicky T. Molecular properties of the “ideal” inhaled anesthetic: studies of fluorinated methanes, ethanes, propanes, and butanes. Anesth Analg. 1994;79:245–51.

    Article  CAS  PubMed  Google Scholar 

  31. Koblin DD, Chortkoff BS, Laster MJ, Eger EI 2nd, Halsey MJ, Ionescu P. Polyhalogenated and perfluorinated compounds that disobey the Meyer-Overton hypothesis. Anesth Analg. 1994;79:1043–8.

    Article  CAS  PubMed  Google Scholar 

  32. Liu J, Laster MJ, Koblin DD, Eger EI 2nd, Halsey MJ, Taheri S, Chortkoff B. A cutoff in potency exists in the perfluoroalkanes. Anesth Analg. 1994;79:238–44.

    CAS  PubMed  Google Scholar 

  33. Freudenthal RI, Martin J. Correlation of brain levels of barbiturate enantiomers with reported differences in duration of sleep. J Pharmacol Exp Ther. 1975;193:664–8.

    CAS  PubMed  Google Scholar 

  34. Miller KW. Towards the molecular bases of anesthetic action. Anesthesiology. 1977;46:2–4.

    Article  CAS  PubMed  Google Scholar 

  35. Tonner PH, Scholz J, Koch C, Schulte am Esch J. The anesthetic effect of dexmedetomidine does not adhere to the Meyer-Overton rule but is reversed by hydrostatic pressure. Anesth Analg. 1997;84:618–22.

    CAS  PubMed  Google Scholar 

  36. Boyle R. Observations and tryals about the resemblances and differences between burning coal and shining wood. Phil Trans. 1667;2:605–12.

    Google Scholar 

  37. Johnson F, Eyring H, Polissar M. The kinetic basis of molecular biology. New York: Wiley; 1954.

    Google Scholar 

  38. Ueda I, Kamaya H. Kinetic and thermodynamic aspects of the mechanism of general anesthesia in a model system of firefly luminescence in vitro. Anesthesiology. 1973;38:425–36.

    Article  CAS  PubMed  Google Scholar 

  39. Branchini BR, Marschner TM, Montemurro AM. A convenient affinity chromatography-based purification of firefly luciferase. Anal Biochem. 1980;104:386–96.

    Article  CAS  PubMed  Google Scholar 

  40. Franks NP, Lieb WR. Do general anaesthetics act by competitive binding to specific receptors? Nature. 1984;310:599–601.

    Article  CAS  PubMed  Google Scholar 

  41. Brett RS, Firestone LL. Morpheus in Calgary. Trends Pharmacol Sci. 1985;6:146–8.

    Article  Google Scholar 

  42. Franks NP, Lieb WR. Partitioning of long-chain alcohols into lipid bilayers: implications for mechanisms of general anesthesia. Proc Natl Acad Sci U S A. 1986;83:5116–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Franks NP, Lieb WR. Mapping of general anaesthetic target sites provides a molecular basis for cutoff effects. Nature. 1985;316:349–51.

    Article  CAS  PubMed  Google Scholar 

  44. Franks NP, Jenkins A, Conti E, Lieb WR, Brick P. Structural basis for the inhibition of firefly luciferase by a general anesthetic. Biophys J. 1998;75:2205–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Dickinson R, Franks NP, Lieb WR. Thermodynamics of anesthetic/protein interactions. Temperature studies on firefly luciferase. Biophys J. 1993;64:1264–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Tomlin SL, Jenkins A, Lieb WR, Franks NP. Stereoselective effects of etomidate optical isomers on gamma-aminobutyric acid type A receptors and animals. Anesthesiology. 1998;88:708–17.

    Article  CAS  PubMed  Google Scholar 

  47. Franks NP, Lieb WR. Stereospecific effects of inhalational general anesthetic optical isomers on nerve ion channels. Science. 1991;254:427–30.

    Article  CAS  PubMed  Google Scholar 

  48. Matthews R. A low-fat theory of anesthesia. Science. 1992;255:156–7.

    Article  CAS  PubMed  Google Scholar 

  49. Bhattacharya AA, Curry S, Franks NP. Binding of the general anesthetics propofol and halothane to human serum albumin. High resolution crystal structures. J Biol Chem. 2000;275:38731–8.

    Article  CAS  PubMed  Google Scholar 

  50. Franks NP. Molecular targets underlying general anaesthesia. Br J Pharmacol. 2006;147 Suppl 1:72–81.

    Google Scholar 

  51. Nicoll RA, Madison DV. General anesthetics hyperpolarize neurons in the vertebrate central nervous system. Science. 1982;217:1055–7.

    Article  CAS  PubMed  Google Scholar 

  52. Hales TG, Lambert JJ. The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurones. Br J Pharmacol. 1991;104:619–28.

    Article  CAS  PubMed  Google Scholar 

  53. Proctor WR, Mynlieff M, Dunwiddie TV. Facilitatory action of etomidate and pentobarbital on recurrent inhibition in rat hippocampal pyramidal neurons. J Neurosci. 1986;6:3161–8.

    CAS  PubMed  Google Scholar 

  54. Mihic SJ, Ye Q, Wick MJ, Koltchine VV, Krasowski MD, Finn SE, Mascia MP, Valenzuela CF, Hanson KK, Greenblatt EP, Harris RA, Harrison NL. Sites of alcohol and volatile anaesthetic action on GABAA and glycine receptors. Nature. 1997;389:385–9.

    Article  CAS  PubMed  Google Scholar 

  55. Belelli D, Lambert JJ, Peters JA, Wafford K. Whiting PJ: The interaction of the general anesthetic etomidate with the GABAA receptor is influenced by a single amino acid. Proc Natl Acad Sci U S A. 1997;94:11031–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Hill-Venning C, Belelli D, Peters JA, Lambert JJ. Subunit-dependent interaction of the general anaesthetic etomidate with the GABAA receptor. Br J Pharmacol. 1997;120:749–56.

    Article  CAS  PubMed  Google Scholar 

  57. Siegwart R, Jurd R, Rudolph U. Molecular determinants for the action of general anesthetics at recombinant alpha(2)beta(3)gamma(2)gamma-aminobutyric acid(A) receptors. J Neurochem. 2002;80:140–8.

    Article  CAS  PubMed  Google Scholar 

  58. Jurd R, Arras M, Lambert S, Drexler B, Siegwart R, Crestani F, Zaugg M, Vogt KE, Ledermann B, Antkowiak B, Rudolph U. General anesthetic actions in vivo strongly attenuated by a point mutation in the GABA(A) receptor beta3 subunit. FASEB J. 2003;17:250–2.

    CAS  PubMed  Google Scholar 

  59. Reynolds DS, Rosahl TW, Cirone J, O’Meara GF, Haythornthwaite A, Newman RJ, Myers J, Sur C, Howell O, Rutter AR, Atack J, Macaulay AJ, Hadingham KL, Hutson PH, Belelli D, Lambert JJ, Dawson GR, McKernan R, Whiting PJ, Wafford KA. Sedation and anesthesia mediated by distinct GABAA receptor isoforms. J Neurosci. 2003;23:8608–17.

    CAS  PubMed  Google Scholar 

  60. Correa-Sales C, Rabin BC, Maze M. A hypnotic response to dexmedetomidine, an alpha 2 agonist, is mediated in the locus coeruleus in rats. Anesthesiology. 1992;76:948–52.

    Article  CAS  PubMed  Google Scholar 

  61. Antognini JF, Schwartz K. Exaggerated anesthetic requirements in the preferentially anesthetized brain. Anesthesiology. 1993;79:1244–9.

    Article  CAS  PubMed  Google Scholar 

  62. Rampil IJ, Mason P, Singh H. Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology. 1993;78:707–12.

    Article  CAS  PubMed  Google Scholar 

  63. Jinks SL, Atherley RJ, Dominguez CL, Sigvardt KA, Antognini JF. Isoflurane disrupts central pattern generator activity and coordination in the lamprey isolated spinal cord. Anesthesiology. 2005;103:567–75.

    Article  CAS  PubMed  Google Scholar 

  64. Jenkins A, Greenblatt EP, Faulkner HJ, Bertaccini E, Light A, Lin A, Andreasen A, Viner A, Trudell JR, Harrison NL. Evidence for a common binding cavity for three general anesthetics within the GABAA receptor. J Neurosci. 2001;21:RC136.

    CAS  PubMed  Google Scholar 

  65. Nishikawa K, Jenkins A, Paraskevakis I, Harrison NL. Volatile anesthetic actions on the GABAA receptors: contrasting effects of alpha 1(S270) and beta 2(N265) point mutations. Neuropharmacology. 2002;42:337–45.

    Article  CAS  PubMed  Google Scholar 

  66. Harris B, Moody E, Skolnick P. Isoflurane anesthesia is stereoselective. Eur J Pharmacol. 1992;217:215–6.

    Article  CAS  PubMed  Google Scholar 

  67. Eger EI 2nd, Koblin DD, Laster MJ, Schurig V, Juza M, Ionescu P, Gong D. Minimum alveolar anesthetic concentration values for the enantiomers of isoflurane differ minimally. Anesth Analg. 1997;85:188–92.

    CAS  PubMed  Google Scholar 

  68. Dickinson R, White I, Lieb WR, Franks NP. Stereoselective loss of righting reflex in rats by isoflurane. Anesthesiology. 2000;93:837–43.

    Article  CAS  PubMed  Google Scholar 

  69. Lysko GS, Robinson JL, Casto R, Ferrone RA. The stereospecific effects of isoflurane isomers in vivo. Eur J Pharmacol. 1994;263:25–9.

    Article  CAS  PubMed  Google Scholar 

  70. Hall AC, Lieb WR, Franks NP. Stereoselective and non-stereoselective actions of isoflurane on the GABAA receptor. Br J Pharmacol. 1994;112:906–10.

    Article  CAS  PubMed  Google Scholar 

  71. Lambert S, Arras M, Vogt KE, Rudolph U. Isoflurane-induced surgical tolerance mediated only in part by beta3-containing GABAA receptors. Eur J Pharmacol. 2005;516:23–7.

    Article  CAS  PubMed  Google Scholar 

  72. Liao M, Sonner JM, Jurd R, Rudolph U, Borghese CM, Harris RA, Laster MJ, Eger EI 2nd. Beta3-containing gamma-aminobutyric acidA receptors are not major targets for the amnesic and immobilizing actions of isoflurane. Anesth Analg. 2005;101:412–8.

    Article  CAS  PubMed  Google Scholar 

  73. Downie DL, Hall AC, Lieb WR, Franks NP. Effects of inhalational general anaesthetics on native glycine receptors in rat medullary neurones and recombinant glycine receptors in Xenopus oocytes. Br J Pharmacol. 1996;118:493–502.

    Article  CAS  PubMed  Google Scholar 

  74. Harrison NL, Kugler JL, Jones MV, Greenblatt EP, Pritchett DB. Positive modulation of human GABAA and glycine receptors by the inhalation anesthetic isoflurane. Mol Pharmacol. 1993;44:628–32.

    CAS  PubMed  Google Scholar 

  75. Mascia MP, Machu TK, Harris RA. Enhancement of homomeric glycine receptor function by long-chain alcohols and anaesthetics. Br J Pharmacol. 1996;119:1331–6.

    Article  CAS  PubMed  Google Scholar 

  76. Franks NP, Lieb WR. Volatile general anaesthetics activate a novel neuronal K+ current. Nature. 1988;333:662–4.

    Article  CAS  PubMed  Google Scholar 

  77. Gruss M, Bushell TJ, Bright DP, Lieb WR, Mathie A, Franks NP. Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol Pharmacol. 2004;65:443–52.

    Article  CAS  PubMed  Google Scholar 

  78. Patel AJ, Honore E. Anesthetic-sensitive 2P domain K+ channels. Anesthesiology. 2001;95:1013–21.

    Article  CAS  PubMed  Google Scholar 

  79. Heurteaux C, Guy N, Laigle C, Blondeau N, Duprat F, Mazzuca M, Lang-Lazdunski L, Widmann C, Zanzouri M, Romey G, Lazdunski M. TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J. 2004;23:2684–95.

    Article  CAS  PubMed  Google Scholar 

  80. Patel AJ, Honore E, Lesage F, Fink M, Romey G, Lazdunski M. Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci. 1999;2:422–6.

    Article  CAS  PubMed  Google Scholar 

  81. Lazarenko RM, Willcox SC, Shu S, Berg AP, Jevtovic-Todorovic V, Talley EM, Chen X, Bayliss DA. Motoneuronal TASK channels contribute to immobilizing effects of inhalational general anesthetics. J Neurosci. 2010;30:7691–704.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Pang DS, Robledo CJ, Carr DR, Gent TC, Vyssotski AL, Caley A, Zecharia AY, Wisden W, Brickley SG, Franks NP. An unexpected role for TASK-3 potassium channels in network oscillations with implications for sleep mechanisms and anesthetic action. Proc Natl Acad Sci U S A. 2009;106:17546–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Eger EI 2nd, Fisher DM, Dilger JP, Sonner JM, Evers A, Franks NP, Harris RA, Kendig JJ, Lieb WR, Yamakura T. Relevant concentrations of inhaled anesthetics for in vitro studies of anesthetic mechanisms. Anesthesiology. 2001;94:915–21.

    Article  CAS  PubMed  Google Scholar 

  84. Eckenhoff RG. Promiscuous ligands and attractive cavities: how do the inhaled anesthetics work? Mol Interv. 2001;1:258–68.

    CAS  PubMed  Google Scholar 

  85. Quasha AL, Eger EI 2nd, Tinker JH. Determination and applications of MAC. Anesthesiology. 1980;53:315–34.

    Article  CAS  PubMed  Google Scholar 

  86. Harper MH, Winter PM, Johnson BH, Eger EI 2nd. Naloxone does not antagonize general anesthesia in the rat. Anesthesiology. 1978;49:3–5.

    Article  CAS  PubMed  Google Scholar 

  87. Eger EI 2nd, Gong D, Xing Y, Raines DE, Flood P. Acetylcholine receptors and thresholds for convulsions from flurothyl and 1,2-dichlorohexafluorocyclobutane. Anesth Analg. 2002;95:1611–5.

    Article  CAS  PubMed  Google Scholar 

  88. Flood P, Ramirez-Latorre J, Role L. Alpha 4 beta 2 neuronal nicotinic acetylcholine receptors in the central nervous system are inhibited by isoflurane and propofol, but alpha 7-type nicotinic acetylcholine receptors are unaffected. Anesthesiology. 1997;86:859–65.

    Article  CAS  PubMed  Google Scholar 

  89. Violet JM, Downie DL, Nakisa RC, Lieb WR, Franks NP. Differential sensitivities of mammalian neuronal and muscle nicotinic acetylcholine receptors to general anesthetics. Anesthesiology. 1997;86:866–74.

    Article  CAS  PubMed  Google Scholar 

  90. Cantor RS. Receptor desensitization by neurotransmitters in membranes: are neurotransmitters the endogenous anesthetics? BioChemistry. 2003;42:11891–7.

    Article  CAS  PubMed  Google Scholar 

  91. Milutinovic PS, Yang L, Cantor RS, Eger EI 2nd, Sonner JM. Anesthetic-like modulation of a gamma-aminobutyric acid type A, strychnine-sensitive glycine, and N-methyl-d-aspartate receptors by coreleased neurotransmitters. Anesth Analg. 2007;105:386–92.

    Article  CAS  PubMed  Google Scholar 

  92. Lu T, Rubio ME, Trussell LO. Glycinergic transmission shaped by the corelease of GABA in a mammalian auditory synapse. Neuron. 2008;57:524–35.

    Article  CAS  PubMed  Google Scholar 

  93. Nury H, Van Renterghem C, Weng Y, Tran A, Baaden M, Dufresne V, Changeux JP, Sonner JM, Delarue M, Corringer PJ. X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel. Nature. 2010;469:428–31.

    Article  Google Scholar 

Download references

Acknowledgement

Although this chapter only bears my name, I want to acknowledge the many contributions and suggestions made by the Editors (particularly Ted Eger).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas P. Franks FRCA, FMedSci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Edmond I Eger, MD

About this chapter

Cite this chapter

Franks, N. (2014). The Unfolding Story of How General Anesthetics Act. In: Eger II, E., Saidman, L., Westhorpe, R. (eds) The Wondrous Story of Anesthesia. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8441-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8441-7_45

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8440-0

  • Online ISBN: 978-1-4614-8441-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics