Skip to main content

Dengue Fever and Climate Change

  • Chapter
  • First Online:
Global Climate Change and Public Health

Part of the book series: Respiratory Medicine ((RM,volume 7))

Abstract

Dengue fever is a viral, tropical, and subtropical mosquito-borne disease. In recent history, transmission has increased drastically with incidence increasing 30-fold over the past 50 years. Today, an estimated 50–100 million infections occur annually and dengue fever is now ranked as the most important vector-borne viral disease in the world. Once localized to a few areas in the tropics, dengue fever is now endemic in over 100 countries. Population growth, unplanned and uncontrolled urbanization, and increased travel paired with ineffective vector control, disease surveillance, and inadequate public health infrastructure have been cited as drivers in the recent escalation of cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dengue [Internet]. http://www.who.int/topics/dengue/en/. 2012. Accessed 19 July 2012.

  2. Hales S, Edwards SJ, Kovats RS. Impacts on health of climate extremes. Geneva: World Health Organization; 2003.

    Google Scholar 

  3. Phillips ML. Dengue reborn: widespread resurgence of a resilient vector. Environ Health Perspect. 2008;116(9):A382–8.

    PubMed  Google Scholar 

  4. Arias JR. Dengue: how are we doing? Washington, D.C.: PAHO/WHO; 2002.

    Google Scholar 

  5. Dengue [Internet]. http://www.cdc.gov/Dengue/. 2012. Accessed 19 July 2012.

  6. Halstead SB, Yamarat C. Recent epidemics of hemorrhagic fever in Thailand. Observations related to pathogenesis of a “new” dengue disease. Am J Public Health Nations Health. 1965;55:1386–95.

    PubMed  CAS  Google Scholar 

  7. Gubler DJ. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev. 1998;11(3):480–96.

    PubMed  CAS  Google Scholar 

  8. Kliks SC, Nimmanitya S, Nisalak A, Burke DS. Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am J Trop Med Hyg. 1988;38(2):411–9.

    PubMed  CAS  Google Scholar 

  9. Halstead SB, Streit TG, Lafontant JG, Putvatana R, Russell K, Sun W, et al. Haiti: absence of dengue hemorrhagic fever despite hyperendemic dengue virus transmission. Am J Trop Med Hyg. 2001;65(3):180–3.

    PubMed  CAS  Google Scholar 

  10. Stephens HA, Klaythong R, Sirikong M, Vaughn DW, Green S, Kalayanarooj S, et al. HLA-A and -B allele associations with secondary dengue virus infections correlate with disease severity and the infecting viral serotype in ethnic Thais. Tissue Antigens. 2002;60(4):309–18.

    PubMed  CAS  Google Scholar 

  11. Halstead SB. Dengue virus-mosquito interactions. Annu Rev Entomol. 2008;53:273–91.

    PubMed  CAS  Google Scholar 

  12. Hopp MJ, Foley JA. Global-scale relationships between climate and the dengue fever vector, Aedes aegypti. Clim Change. 2001;48(2–3):441–63.

    Google Scholar 

  13. MacDonald WW. Aedes aegypti in Malaya. II. Larval and adult biology. Ann Trop Med Parasitol. 1956;50(4):399–414.

    PubMed  CAS  Google Scholar 

  14. Gubler DJ. Dengue/dengue haemorrhagic fever: history and current status. Novartis Found Symp. 2006;277:3–16. discussion 16–22, 71–3, 251–3.

    PubMed  Google Scholar 

  15. Christophers SR. Aedes aegypti (L.) the yellow fever mosquito: its life history, bionomics and structure. London: Cambridge University Press; 1960.

    Google Scholar 

  16. Scott TW, Chow E, Strickman D, Kittayapong P, Wirtz RA, Lorenz LH, et al. Blood-feeding patterns of Aedes aegypti (Diptera: Culicidae) collected in a rural Thai village. J Med Entomol. 1993;30(5):922–7.

    PubMed  CAS  Google Scholar 

  17. Yasuno M, Tonn RJ. A study of biting habits of Aedes aegypti in Bangkok, Thailand. Bull World Health Organ. 1970;43(2):319–25.

    PubMed  CAS  Google Scholar 

  18. Halstead SB. Successes and failures in dengue control—global experience. Dengue Bull. 2000;24:66–70.

    Google Scholar 

  19. Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect. 2009;11:14–5.

    Google Scholar 

  20. Juliano SA, Lounibos LP, O’Meara GF. A field test for competitive effects of Aedes albopictus on A. aegypti in south Florida: differences between sites of coexistence and exclusion? Oecologia. 2004;139(4):583–93.

    PubMed  Google Scholar 

  21. O’Meara GF, Evans Jr LF, Gettman AD, Cuda JP. Spread of Aedes albopictus and decline of Ae. aegypti (Diptera: Culicidae) in Florida. J Med Entomol. 1995;32(4):554–62.

    PubMed  Google Scholar 

  22. Gratz NG. Critical review of the vector status of Aedes albopictus. Med Vet Entomol. 2004;18(3):215–27.

    PubMed  CAS  Google Scholar 

  23. Moore PR, Johnson PH, Smith GA, Ritchie SA, Van Den Hurk AF. Infection and dissemination of dengue virus type 2 in Aedes aegypti, Aedes albopictus, and Aedes scutellaris from the Torres Strait, Australia. J Am Mosq Control Assoc. 2007;23(4):383–8.

    PubMed  Google Scholar 

  24. Farnesi LC, Martins AJ, Valle D, Rezende GL. Embryonic development of Aedes aegypti (Diptera: Culicidae): influence of different constant temperatures. Mem Inst Oswaldo Cruz. 2009;104(1):124–6.

    PubMed  Google Scholar 

  25. Chang LH, Hsu EL, Teng HJ, Ho CM. Differential survival of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) larvae exposed to low temperatures in Taiwan. J Med Entomol. 2007;44(2):205–10.

    PubMed  Google Scholar 

  26. Yang HM, Macoris ML, Galvani KC, Andrighetti MT, Wanderley DM. Assessing the effects of temperature on dengue transmission. Epidemiol Infect. 2009;4:1–9.

    Google Scholar 

  27. Yang HM, Macoris ML, Galvani KC, Andrighetti MT, Wanderley DM. Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol Infect. 2009;4:1–15.

    Google Scholar 

  28. Canyon DV, Hii JL, Muller R. Adaptation of Aedes aegypti (Diptera: Culicidae) oviposition behavior in response to humidity and diet. J Insect Physiol. 1999;45(10):959–64.

    PubMed  CAS  Google Scholar 

  29. Sota T, Mogi M. Interspecific variation in desiccation survival time of Aedes (stegomyia) mosquito eggs is correlated with habitat and egg size. Oecologia. 1992;90(3):353–8.

    Google Scholar 

  30. Lewis D. Observations on Aedes aegypti under controlled atmospheric conditions. Bull Entomol Res. 1933;24:363–72.

    Google Scholar 

  31. Garrett-Jones C. Prognosis for the interruption of malaria transmission through assessment of the mosquito’s vectoral capacity. Nature. 1964;204:1173–5.

    PubMed  CAS  Google Scholar 

  32. Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, Strickman D, et al. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol. 2000;37(1):89–101.

    PubMed  CAS  Google Scholar 

  33. Costero A, Edman JD, Clark GG, Kittayapong P, Scott TW. Survival of starved Aedes aegypti (Diptera: Culicidae) in Puerto Rico and Thailand. J Med Entomol. 1999;36(3):272–6.

    PubMed  CAS  Google Scholar 

  34. Focks DA, Haile DG, Daniels E, Mount GA. Dynamic life table model for Aedes aegypti (Diptera: Culicidae): simulation results and validation. J Med Entomol. 1993;30(6):1018–28.

    PubMed  CAS  Google Scholar 

  35. Lumsden WH. Observations on the effect of microclimate on biting by Aedes aegypti (L.) (Dipt., Culicid.). J Exp Biol. 1947;24(3–4):361–73.

    PubMed  CAS  Google Scholar 

  36. Watts DM, Burke DS, Harrison BA, Whitmire RE, Nisalak A. Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg. 1987;36(1):143–52.

    PubMed  CAS  Google Scholar 

  37. Sheppard PM, Macdonald WW, Tonn RJ, Grab B. The dynamics of an adult population of Aedes aegypti in relation to dengue haemorrhagic fever in Bangkok. J Anim Ecol. 1969;38:661–702.

    Google Scholar 

  38. Ooi EE, Goh KT, Gubler DJ. Dengue prevention and 35 years of vector control in Singapore. Emerg Infect Dis. 2006;12(6):887–93.

    PubMed  Google Scholar 

  39. Scott TW, Morrison AC. Aedes aegypti density and the risk of dengue-virus transmission. In: Takken W, Scott TW, editors. Ecological aspects for application of genetically modified mosquitoes. Dordrecht: Kluwer Academic; 2003.

    Google Scholar 

  40. Focks DA, Brenner RJ, Hayes J, Daniels E. Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts. Am J Trop Med Hyg. 2000;62(1):11–8.

    PubMed  CAS  Google Scholar 

  41. Focks DA, Haile DG, Daniels E, Mount GA. Dynamic life table model for Aedes aegypti (Diptera: Culicidae): analysis of the literature and model development. J Med Entomol. 1993;30(6):1003–17.

    PubMed  CAS  Google Scholar 

  42. Southwood TR, Murdie G, Yasuno M, Tonn RJ, Reader PM. Studies on the life budget of Aedes aegypti in Wat Samphaya, Bangkok, Thailand. Bull World Health Organ. 1972;46(2):211–26.

    PubMed  CAS  Google Scholar 

  43. Jury MR. Climate influence on dengue epidemics in Puerto Rico. Int J Environ Health Res. 2008;18(5):323–34.

    PubMed  Google Scholar 

  44. Lenhart AE, Castillo CE, Oviedo M, Villegas E. Use of the pupal/demographic-survey technique to identify the epidemiologically important types of containers producing Aedes aegypti (L.) in a dengue-endemic area of Venezuela. Ann Trop Med Parasitol. 2006;100 Suppl 1:S53–9.

    PubMed  Google Scholar 

  45. Romero-Vivas CM, Arango-Padilla P, Falconar AK. Pupal-productivity surveys to identify the key container habitats of Aedes aegypti (L.) in Barranquilla, the principal seaport of Colombia. Ann Trop Med Parasitol. 2006;100 Suppl 1:S87–95.

    PubMed  Google Scholar 

  46. Dizon JJ. Philippine hemorrhagic fever—epidemiologic aspects. J Philipp Med Assoc. 1967;43(5):346–65.

    PubMed  CAS  Google Scholar 

  47. Chareonviriyaphap T, Akratanakul P, Nettanomsak S, Huntamai S. Larval habitats and distribution patterns of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse), in Thailand. Southeast Asian J Trop Med Public Health. 2003;34(3):529–35.

    PubMed  Google Scholar 

  48. Eamchan P, Nisalak A, Foy HM, Chareonsook OA. Epidemiology and control of dengue virus infections in Thai villages in 1987. Am J Trop Med Hyg. 1989;41(1):95–101.

    PubMed  CAS  Google Scholar 

  49. Ghosh SN, Pavri KM, Singh KR, Sheikh BH, Dilma LV, Mahadev PV, et al. Investigations on the outbreak of dengue fever in Ajmer city, Rajasthan state in 1969 Part I. Epidemiological, clinical and virological study of the epidemic. Indian J Med Res. 1974;62(4):511–22.

    PubMed  CAS  Google Scholar 

  50. Pontes RJ, Freeman J, Oliveira-Lima JW, Hodgson JC, Spielman A. Vector densities that potentiate dengue outbreaks in a Brazilian city. Am J Trop Med Hyg. 2000;62(3):378–83.

    PubMed  CAS  Google Scholar 

  51. Brunkard JM, Cifuentes E, Rothenberg SJ. Assessing the roles of temperature, precipitation, and ENSO in dengue re-emergence on the Texas-Mexico border region. Salud Publica Mex. 2008;50(3):227–34.

    PubMed  Google Scholar 

  52. Chowell G, Sanchez F. Climate-based descriptive models of dengue fever: the 2002 epidemic in Colima, Mexico. J Environ Health. 2006;68(10):40–4. 55.

    PubMed  Google Scholar 

  53. Hurtado-Diaz M, Riojas-Rodriguez H, Rothenberg SJ, Gomez-Dantes H, Cifuentes E. Short communication: impact of climate variability on the incidence of dengue in Mexico. Trop Med Int Health. 2007;12(11):1327–37.

    PubMed  CAS  Google Scholar 

  54. Moore CG, Cline BL, Ruiz-Tiben E, Lee D, Romney-Joseph H, Rivera-Correa E. Aedes aegypti in Puerto Rico: environmental determinants of larval abundance and relation to dengue virus transmission. Am J Trop Med Hyg. 1978;27(6):1225–31.

    PubMed  CAS  Google Scholar 

  55. Keating J. An investigation into the cyclical incidence of dengue fever. Soc Sci Med. 2001;53(12):1587–97.

    PubMed  CAS  Google Scholar 

  56. Arcari P, Tapper N, Pfueller S. Regional variability in relationships between climate and dengue/DHF in Indonesia. Sing J Trop Geogr. 2007;28(3):251–72.

    Google Scholar 

  57. National Research Council. Under the weather: climate, ecosystems, and infectious disease. Washington, D.C.: National Academy Press; 2001.

    Google Scholar 

  58. Johansson MA, Dominici F, Glass GE. Local and global effects of climate on dengue transmission in Puerto Rico. PLoS Negl Trop Dis. 2009;3(2):e382.

    PubMed  Google Scholar 

  59. Thammapalo S, Chongsuwiwatwong V, McNeil D, Geater A. The climatic factors influencing the occurrence of dengue hemorrhagic fever in Thailand. Southeast Asian J Trop Med Public Health. 2005;36(1):191–6.

    PubMed  Google Scholar 

  60. Muto R. Summary of dengue situation in WHO western pacific region. Dengue Bull. 1998;22:12–9.

    Google Scholar 

  61. Nagao Y, Thavara U, Chitnumsup P, Tawatsin A, Chansang C, Campbell-Lendrum D. Climatic and social risk factors for Aedes infestation in rural Thailand. Trop Med Int Health. 2003;8(7):650–9.

    PubMed  Google Scholar 

  62. Cazelles B, Chavez M, McMichael AJ, Hales S. Nonstationary influence of El Nino on the synchronous dengue epidemics in Thailand. PLoS Med. 2005;2(4):e106.

    PubMed  Google Scholar 

  63. Chantha N, Guyant P, Hoyer S. Control of DHF outbreak in Cambodia, 1998. Dengue Bull. 1998;22:69–74.

    Google Scholar 

  64. Bangs MJ, Larasati RP, Corwin AL, Wuryadi S. Climatic factors associated with epidemic dengue in Palembang, Indonesia: implications of short-term meteorological events on virus transmission. Southeast Asian J Trop Med Public Health. 2006;37(6):1103–16.

    PubMed  Google Scholar 

  65. Corwin AL, Larasati RP, Bangs MJ, Wuryadi S, Arjoso S, Sukri N, et al. Epidemic dengue transmission in southern Sumatra, Indonesia. Trans R Soc Trop Med Hyg. 2001;95(3):257–65.

    PubMed  CAS  Google Scholar 

  66. Gagnon AS, Bush ABG, Smoyer-Tomic KE. Dengue epidemics and the El Nino southern oscillation. Clim Change. 2001;19:35–43.

    Google Scholar 

  67. Poveda GJ, Graham NE, Epstein PR, Rojas W, Vélez DI, Quiñónez ML, Martnes P. Climate and ENSO variability associated to malaria and dengue fever in Columbia. 10th Symposium on global change studies, Boston: American Meteorological Society, Jan 10–15, 1999.

    Google Scholar 

  68. Amarakoon D, Chen A, Rawlins S, Chadee DD, Taylor M, Stennett R. Dengue epidemics in the Caribbean-temperature indices to gauge the potential for onset of dengue. Mitig Adadpt Strat Glob Change. 2008;13(4):341–57.

    Google Scholar 

  69. Hales S, Weinstein P, Woodward A. Dengue fever epidemics in the south pacific: driven by El Nino southern oscillation? Lancet. 1996;348(9042):1664–5.

    PubMed  CAS  Google Scholar 

  70. Hales S, Weinstein P, Souares Y, Woodward A. El Nino and the dynamics of vectorborne disease transmission. Environ Health Perspect. 1999;107(2):99–102.

    PubMed  CAS  Google Scholar 

  71. Hales S, de Wet N, Maindonald J, Woodward A. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet. 2002;360(9336):830–4.

    PubMed  Google Scholar 

  72. Jetten TH, Focks DA. Potential changes in the distribution of dengue transmission under climate warming. Am J Trop Med Hyg. 1997;57(3):285–97.

    PubMed  CAS  Google Scholar 

  73. Patz JA, Martens WJ, Focks DA, Jetten TH. Dengue fever epidemic potential as projected by general circulation models of global climate change. Environ Health Perspect. 1998;106(3):147–53.

    PubMed  CAS  Google Scholar 

  74. Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat. The 2006 revisions and world urbanization prospects: The 2007 revision; 2007.

    Google Scholar 

  75. Knudsen AB, Slooff R. Vector-borne disease problems in rapid urbanization: New approaches to vector control. Bull World Health Organ. 1992;70(1):1–6.

    PubMed  CAS  Google Scholar 

  76. Gubler DJ. The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? Comp Immunol Microbiol Infect Dis. 2004;27(5):319–30.

    PubMed  CAS  Google Scholar 

  77. United Nations Human Settlements Program. The challenge of slums: global report on human settlements 2003. London: Earthscan; 2003.

    Google Scholar 

  78. World Health Organization, Regional Office for South-East Asia. Situation update of dengue in the SEA region, 2010; 2010.

    Google Scholar 

  79. Rogers DJ, Wilson AJ, Hay SI, Graham AJ. The global distribution of yellow fever and dengue. Adv Parasitol. 2006;62:181–220.

    PubMed  CAS  Google Scholar 

  80. United Nations, Department of Economic and Social Affairs. World urbanization prospects, the 2011 revision. New York: UN DESA; 2011.

    Google Scholar 

  81. Cruz RV, Harasawa H, Lai M, Wu S. Asia. Cambridge: Cambridge University Press; 2007.

    Google Scholar 

  82. Confalonieri U, Menn B, Akhtar R, Ebi KL, Hauengue M, Kovats RS, et al. Impacts, adaptation and vulnerability. Cambridge: Cambridge University Press; 2007.

    Google Scholar 

  83. Beebe NW, Cooper RD, Mottram P, Sweeney AW. Australia’s dengue risk driven by human adaptation to climate change. PLoS Negl Trop Dis. 2009;3(5):e429.

    PubMed  Google Scholar 

  84. Christensen JH, Hewitson B, Busuioc A, Chen A, Goa X, Held I, et al. Regional climate projections. Cambridge: Cambridge University Press; 2007.

    Google Scholar 

  85. McMichael A, Woodruff R, Whetton P, Hennessy K, Nicholls N, Hales S, et al. Human health and climate change in Oceania: a risk assessment 2002. Canberra: Commonwealth of Australia; 2003.

    Google Scholar 

  86. Woofruff R, Hales S, Butler C, McMichael A. Climate change and health impacts in Australia: effects of dramatic CO2 emission reductions. Canberra: Australian National University; 2005.

    Google Scholar 

  87. de Wet N, Ye W, Hales S, Warrick R, Woodward A, Weinstein P. Use of a computer model to identify potential hotspots for dengue fever in New Zealand. N Z Med J. 2001;114(1140):420–2.

    PubMed  Google Scholar 

  88. Dengue in the Western Pacific Region [Internet]. http://www.wpro.who.int/health_topics/dengue/ 2009. Accessed 21 Aug 2009.

  89. Calisher CH, Nuti M, Lazuick JS, Ferrari DM, Kappus KD. Dengue in the Seychelles. Bull World Health Organ. 1981;59(4):619–22.

    PubMed  CAS  Google Scholar 

  90. Effler PV, Pang L, Kitsutani P, Vorndam V, Nakata M, Ayers T, et al. Dengue fever, Hawaii, 2001–2002. Emerg Infect Dis. 2005;11(5):742–9.

    PubMed  Google Scholar 

  91. Mimura N, Burse L, McLean RF, Agard J, Briguglio L, Lefale P, et al. Small islands. Cambridge: Cambridge University Press; 2007.

    Google Scholar 

  92. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, et al. Global climate projections. Cambridge: Cambridge University Press; 2007.

    Google Scholar 

  93. Amarsinghe A, Letson GW. Dengue in the middle east: a neglected, emerging disease of importance. Trans R Soc Trop Med Hyg. 2012;106(1):1–2.

    Google Scholar 

  94. Rathor HR. The role of vectors in emerging and re-emerging diseases in the Eastern Mediterranean region. Dengue Bull. 2000;24:103–9.

    Google Scholar 

  95. Suaya JA, Shepard DS, Beatty ME. Dengue: burden of disease and cost of illness. Geneva: WHO; 2006.

    Google Scholar 

  96. Dengue fever [Internet]. http://www.cdc.gov/ncidod/dvbid/dengue/. 2008. Accessed Aug 2009.

  97. Amarasinghe A, Kuritsky J, Letson G, Margolis H. Dengue virus infection in Africa. Emerg Infect Dis. 2011;17(8):1349–54.

    PubMed  Google Scholar 

  98. Population Reference Bureau. 2009 World population data sheet. 2009.

    Google Scholar 

  99. World Health Organization. World health statistics. 2009.

    Google Scholar 

  100. World Bank. Sub-Saharan Africa data profile. 2008.

    Google Scholar 

  101. Boko M, Niang I, Nyong A, Vogel C, Githeko A, Medany M, et al. Africa. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE, editors. Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2007. p. 433–67.

    Google Scholar 

  102. Reiter P. Climate change and mosquito-borne disease. Environ Health Perspect. 2001;109 Suppl 1:141–61.

    PubMed  Google Scholar 

  103. Holstein M. Dynamics of Aedes aegypti distribution, density and seasonal prevalence in the Mediterranean area. Bull World Health Organ. 1967;36:541–3.

    PubMed  CAS  Google Scholar 

  104. Caminade C, Medlock JM, Ducheyne E, McIntyre KM, Leach S, Baylis M, et al. Suitability of European climate for the Asia tiger mosquito Aedes albopictus: recent trends and future scenarios. J R Soc Interface. 2012;9(75):2708–17.

    PubMed  Google Scholar 

  105. Senior K. Vector-borne diseases threaten Europe. Lancet Infect Dis. 2008;8(9):531–2.

    PubMed  Google Scholar 

  106. Gardner L, Fajardo D, Waller S, Wang O, Sahotra S. A predictive spacial model to quantify the risk of air-travel-associated importation into the United States and Europe. J Trop Med. 2012;2012:103679.

    PubMed  Google Scholar 

  107. Thomas ST, Fischer D, Fleischmann S, Bittner T, Beierkuhnlein C. Risk assessment of dengue virus amplification in Europe based on spatio-temporal high resolution climate change projections. Erdkunde. 2011;65(2):137–50.

    Google Scholar 

  108. Lambrechts L, Scott TW, Gubler DJ. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis. 2010;4(5):e646.

    PubMed  Google Scholar 

  109. San Martin JL, Braithwaite O, Zambrano B, Solorzano JO, Bouckenooghe A, Dayan GH, et al. The epidemiology of dengue in the Americas over the last three decades: a worrisome reality. Am J Trop Med Hyg. 2010;8(1):128–35.

    Google Scholar 

  110. Dengue regional information: Number of cases 2008–2010 [Internet]. http://new.paho.org/hq/index.php?option=com_content&task=view&id=264&Itemid=363. 2012. Accessed 20 May 2012.

    Google Scholar 

  111. Margin G, García CG, Choque DC, Giménez JC, Morenao AR, Nagy GJ, et al. Latin America. Cambridge: Cambridge University Press; 2007.

    Google Scholar 

  112. Ferranti DD, Perry GE, Ferreira FHG, Walton M, Coady D, Cunningham W, et al. Inequality in Latin America and the Caribbean: breaking with history. Washington, D.C.: The International Bank for Reconstruction and Development/The World Bank; 2004.

    Google Scholar 

  113. Ehrenkranz NJ, Ventura AK, Cuardrado RR, Pond WL, Porter JE. Pandemic dengue in Caribbean countries and the southern united states—past, present and potential problems. N Engl J Med. 1971;285(26):1460–9.

    PubMed  CAS  Google Scholar 

  114. Ramos MM, Mohammed H, Zielinski-Gutierrez E, Hayden MH, Lopez JLR, Fournier M, et al. Epidemic dengue and dengue hemorrhagic fever at the Texas-Mexico border: results of a household-based seroepidemiologic survey, December 2005. Am J Trop Med Hyg. 2008;78(3):364–9.

    PubMed  Google Scholar 

  115. Radke EG, Gregory CJ, Kintziger KW, Sauber-Schatz EK, Hunsperger EA, Gallgher GR, et al. Dengue outbreak in Key West, Florida, USA, 2009. Emerg Infect Dis. 2012;18(1):135–7.

    PubMed  Google Scholar 

  116. CDC. Underdiagnosis of dengue—Laredo, Texas, 1999. MMWR Morb Mortal Wkly Rep. 2001;50(4):57–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Cromar Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cromar, L., Cromar, K. (2014). Dengue Fever and Climate Change. In: Pinkerton, K., Rom, W. (eds) Global Climate Change and Public Health. Respiratory Medicine, vol 7. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8417-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8417-2_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-8416-5

  • Online ISBN: 978-1-4614-8417-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics