Skip to main content

The Choroid

  • Chapter
  • First Online:
Pathologic Myopia

Abstract

The choroid is the most vascular structure in the body and serves the most metabolically active tissue, the retina. As such the choroid is an integral portion of the visual system and highly prone to alteration and atrophy in highly myopic eyes. The chapter starts with a presentation of the embryology, anatomy, and physiology of the choroid. Methods of imaging the choroid are discussed. These imaging modalities are used to visualize and define the abnormalities in the choroid associated with high myopia particularly myopic choroidal thinning and myopic choroidal atrophy. Additional abnormalities such as peripapillary intrachoroidal cavitation and focal choroidal excavation are delineated. Future possibilities for research are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parver LM, Auker C, Carpenter DO. Choroidal blood flow as a heat dissipating mechanism in the macula. Am J Ophthalmol. 1980;89(5):641–6.

    CAS  PubMed  Google Scholar 

  2. Wangsa-Wirawan ND, Linsenmeier RA. Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol. 2003;121(4):547–57.

    Article  PubMed  Google Scholar 

  3. Parver LM, Auker C, Carpenter DO. Choroidal blood flow as a heat dissipating mechanism in the macula. Am J Ophthalmol. 1980;84:641–6.

    Google Scholar 

  4. Yuan X, Gu X, Crabb JS, et al. Quantitative proteomics: comparison of the macular Bruch membrane/choroid complex from age-related macular degeneration and normal eyes. Mol Cell Proteomics. 2010;9:1031–46.

    Article  CAS  PubMed  Google Scholar 

  5. Nickla DL, Wallman J. The multifunctional choroid. Prog Retin Eye Res. 2010;29(2):144–68.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Sellheyer K. Development of the choroid and related structures. Eye (Lond). 1990;4(Pt 2):255–61.

    Article  Google Scholar 

  7. Mund ML, Rodrigues MM, Fine BS. Light and electron microscopic observations on the pigmented layers of the developing human eye. Am J Ophthalmol. 1972;73(2):167–82.

    CAS  PubMed  Google Scholar 

  8. Meriney SD, Pilar G. Cholinergic innervation of the smooth muscle cells in the choroid coat of the chick eye and its development. J Neurosci. 1987;7(12):3827–39.

    CAS  PubMed  Google Scholar 

  9. Schroedl F, Brehmer A, Neuhuber WL, et al. The normal human choroid is endowed with a significant number of lymphatic vessel endothelial hyaluronate receptor 1 (LYVE-1)-positive macrophages. Invest Ophthalmol Vis Sci. 2008;49(12):5222–9.

    Article  PubMed  Google Scholar 

  10. May CA. Non-vascular smooth muscle cells in the human choroid: distribution, development and further characterization. J Anat. 2005;207(4):381–90.

    Article  PubMed  Google Scholar 

  11. Poukens V, Glasgow BJ, Demer JL. Nonvascular contractile cells in sclera and choroid of humans and monkeys. Invest Ophthalmol Vis Sci. 1998;39(10):1765–74.

    CAS  PubMed  Google Scholar 

  12. Flugel-Koch C, May CA, Lutjen-Drecoll E. Presence of a contractile cell network in the human choroid. Ophthalmologica. 1996;210(5):296–302.

    Article  CAS  PubMed  Google Scholar 

  13. de Hoz R, Ramirez AI, Salazar JJ, et al. Substance P and calcitonin gene-related peptide intrinsic choroidal neurons in human choroidal whole-mounts. Histol Histopathol. 2008;23(10):1249–58.

    PubMed  Google Scholar 

  14. Saint-Geniez M, Kurihara T, Sekiyama E, et al. An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. Proc Natl Acad Sci U S A. 2009;106(44):18751–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Bernstein MH, Hollenberg MJ. Fine structure of the choriocapillaris and retinal capillaries. Invest Ophthalmol. 1965;4(6):1016–25.

    CAS  PubMed  Google Scholar 

  16. Federman JL. The fenestrations of the choriocapillaris in the presence of choroidal melanoma. Trans Am Ophthalmol Soc. 1982;80:498–516.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Peters S, Heiduschka P, Julien S, et al. Ultrastructural findings in the primate eye after intravitreal injection of bevacizumab. Am J Ophthalmol. 2007;143(6):995–1002.

    Article  CAS  PubMed  Google Scholar 

  18. Hirata A, Negi A. Morphological changes of choriocapillaris in experimentally induced chick myopia. Graefes Arch Clin Exp Ophthalmol. 1998;236:132–7.

    Article  CAS  PubMed  Google Scholar 

  19. Rutnin U, Schepens CL. Fundus appearance in normal eyes. II. The standard peripheral fundus and developmental variations. Am J Ophthalmol. 1967;64(5):840–52.

    CAS  PubMed  Google Scholar 

  20. Haab O. Atlas und Grundriss der Ophthalmoscopie und ophthalmoscopischen Diagnostik. 3rd ed. Munchen Verlag von J. F. Lehmann. 1900, Figure 80, p. 90, hintere Vortexvenen.

    Google Scholar 

  21. Guyer DR, Schachat AP, Green WR. The choroid: structural considerations. In: Ryan SJ, editor. Retina. 4th ed. Philadelphia: Mosby; 2006. p. 34–41.

    Google Scholar 

  22. Hayreh SS. In vivo choroidal circulation and its watershed zones. Eye (Lond). 1990;4(Pt 2):273–89.

    Article  Google Scholar 

  23. Maepea O. Pressures in the anterior ciliary arteries, choroidal veins and choriocapillaris. Exp Eye Res. 1992;54(5):731–6.

    Article  CAS  PubMed  Google Scholar 

  24. Flower RW, Fryczkowski AW, McLeod DS. Variability in choriocapillaris blood flow distribution. Invest Ophthalmol Vis Sci. 1995;36:1247–58.

    CAS  PubMed  Google Scholar 

  25. Chen JC, Fitzke FW, Pauleikhoff D, Bird AC. Functional loss in age-related Bruch’s membrane change with choroidal perfusion defect. Invest Ophthalmol Vis Sci. 1992;33:334–40.

    CAS  PubMed  Google Scholar 

  26. Hayreh SS. The blood supply of the optic nerve head and the evaluation of it – myth and reality. Prog Retin Eye Res. 2001;20(5):563–93.

    Article  CAS  PubMed  Google Scholar 

  27. Alm A, Bill A. Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp Eye Res. 1973;15(1):15–29.

    Article  CAS  PubMed  Google Scholar 

  28. Friedman E. Choroidal blood flow. Pressure-flow relationships. Arch Ophthalmol. 1970;83(1):95–9.

    Article  CAS  PubMed  Google Scholar 

  29. Kiel JW, van Heuven WA. Ocular perfusion pressure and choroidal blood flow in the rabbit. Invest Ophthalmol Vis Sci. 1995;36(3):579–85.

    CAS  PubMed  Google Scholar 

  30. Polak K, Luksch A, Berisha F, et al. Altered nitric oxide system in patients with open-angle glaucoma. Arch Ophthalmol. 2007;125(4):494–8.

    Article  CAS  PubMed  Google Scholar 

  31. Lutjen-Drecoll E. Choroidal innervation in primate eyes. Exp Eye Res. 2006;82(3):357–61.

    Article  PubMed  Google Scholar 

  32. Polska E, Simader C, Weigert G, et al. Regulation of choroidal blood flow during combined changes in intraocular pressure and arterial blood pressure. Invest Ophthalmol Vis Sci. 2007;48(8):3768–74.

    Article  PubMed  Google Scholar 

  33. Riva CE, Titze P, Hero M, et al. Choroidal blood flow during isometric exercises. Invest Ophthalmol Vis Sci. 1997;38(11):2338–43.

    CAS  PubMed  Google Scholar 

  34. Riva CE, Titze P, Hero M, Petrig BL. Effect of acute decreases of perfusion pressure on choroidal blood flow in humans. Invest Ophthalmol Vis Sci. 1997;38(9):1752–60.

    CAS  PubMed  Google Scholar 

  35. Houssier M, Raoul W, Lavalette S, et al. CD36 deficiency leads to choroidal involution via COX2 down-regulation in rodents. PLoS Med. 2008;5(2):e39.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Fujiwara T, Imamura Y, Giovinazzo VJ, Spaide RF. Fundus autofluorescence and optical coherence tomographic findings in acute zonal occult outer retinopathy. Retina. 2010;30(8):1206–16.

    Article  PubMed  Google Scholar 

  37. Geiser MH, Bonvin M, Quibel O. Corneal and retinal temperatures under various ambient conditions: a model and experimental approach. Klin Monbl Augenheilkd. 2004;221(5):311–4.

    Article  CAS  PubMed  Google Scholar 

  38. Biesemeier A, Schraermeyer U, Eibl O. Chemical composition of melanosomes, lipofuscin and melanolipofuscin granules of human RPE tissues. Exp Eye Res. 2011;93:29–39.

    Article  CAS  PubMed  Google Scholar 

  39. Ulshafer RJ, Allen CB, Rubin ML. Distributions of elements in the human retinal pigment epithelium. Arch Ophthalmol. 1990;108:113–7.

    Article  CAS  PubMed  Google Scholar 

  40. Biesemeier A, Julien S, Kokkinou D, Schraermeyer U, Eibl O. A low zinc diet leads to loss of Zn in melanosomes of the RPE but not in melanosomes of the choroidal melanocytes. Metallomics. 2012;4:323–32.

    Article  CAS  PubMed  Google Scholar 

  41. Geeraets WJ, Berry ER. Ocular spectral characteristics as related too hazards from lasers and other light sources. Am J Ophthalmol. 1968;66:15–20.

    CAS  PubMed  Google Scholar 

  42. Ketterer SG, Wiegand BD. Hepatic clearance of indocyanine green. Clin Res. 1959;7:289.

    Google Scholar 

  43. Hayashi K, Hasegawa T, Tokoro T, Delaey JJ. Value of indocyanine green angiography in the diagnosis of occult choroidal neovascular membrane. Jpn J Ophthalmol. 1988;42:827–9.

    Google Scholar 

  44. Hewick SA, Fairhead AC, Culy JC, Atta HR. A comparison of 10 MHz and 20 MHz ultrasound probes in imaging the eye and orbit. Br J Ophthalmol. 2004;88(4):551–5.

    Article  CAS  PubMed  Google Scholar 

  45. Hoffer KJ. Ultrasound velocities for axial eye length measurement. J Cataract Refract Surg. 1994;20(5):554–62.

    Article  CAS  PubMed  Google Scholar 

  46. Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146(4):496–500.

    Article  PubMed  Google Scholar 

  47. Chinn SR, Swanson EA, Fujimoto JG. Optical coherence tomography using a frequency-tunable optical source. Opt Lett. 1997;22(5):340–2.

    Article  CAS  PubMed  Google Scholar 

  48. Choma M, Sarunic M, Yang C, Izatt J. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express. 2003;11(18):2183–9.

    Article  PubMed  Google Scholar 

  49. Branchini L, Regatieri CV, Flores-Moreno I, et al. Reproducibility of choroidal thickness measurements across three spectral domain optical coherence tomography systems. Ophthalmology. 2012;119:119–23.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Ikuno Y, Maruko I, Yasuno Y, et al. Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(8):5536–40.

    Article  PubMed  Google Scholar 

  51. Tan CS, Ouyang Y, Ruiz H, Sadda SR. Diurnal variation of choroidal thickness in normal, healthy subjects. Invest Ophthalmol Vis Sci. 2012;53(1):261–6.

    Article  PubMed  Google Scholar 

  52. Manjunath V, Taha M, Fujimoto JG, Duker JS. Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography. Am J Ophthalmol. 2010;150(3):325–9.e1.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Hirata M, Tsujikawa A, Matsumoto A, et al. Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(8):4971–8.

    Article  PubMed  Google Scholar 

  54. Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol. 2009;147(5):811–5.

    Article  PubMed  Google Scholar 

  55. Ikuno Y, Kawaguchi K, Nouchi T, Yasuno Y. Choroidal thickness in healthy Japanese subjects. Invest Ophthalmol Vis Sci. 2010;51(4):2173–6.

    Article  PubMed  Google Scholar 

  56. Benavente-Perez A, Hosking SL, Logan NS, Bansal D. Reproducibility-repeatability of choroidal thickness calculation using optical coherence tomography. Optom Vis Sci. 2010;87(11):867–72.

    Article  PubMed  Google Scholar 

  57. Esmaeelpour M, Povazay B, Hermann B, et al. Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients. Invest Ophthalmol Vis Sci. 2010;51(10):5260–6.

    Article  PubMed  Google Scholar 

  58. Li XQ, Larsen M, Munch IC. Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish university students. Invest Ophthalmol Vis Sci. 2011;52(11):8438–41.

    Article  PubMed  Google Scholar 

  59. Feeney-Burns L, Burns RP, Gao CL. Age-related macular changes in humans over 90 years old. Am J Ophthalmol. 1990;109(3):265–78.

    CAS  PubMed  Google Scholar 

  60. Sarks SH. Ageing and degeneration in the macular region: a clinico-pathological study. Br J Ophthalmol. 1976;60(5):324–41.

    Article  CAS  PubMed  Google Scholar 

  61. Ramrattan RS, van der Schaft TL, Mooy CM, et al. Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci. 1994;35(6):2857–64.

    CAS  PubMed  Google Scholar 

  62. Read SA, Collins MJ, Sander BP. Human optical axial length and defocus. Invest Ophthalmol Vis Sci. 2010;51(12):6262–9.

    Article  PubMed  Google Scholar 

  63. Wallman J, Wildsoet C, Xu A, et al. Moving the retina: choroidal modulation of refractive state. Vision Res. 1995;35(1):37–50.

    Article  CAS  PubMed  Google Scholar 

  64. Wildsoet C, Wallman J. Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks. Vision Res. 1995;35(9):1175–94.

    Article  CAS  PubMed  Google Scholar 

  65. Troilo D, Nickla DL, Wildsoet CF. Choroidal thickness changes during altered eye growth and refractive state in a primate. Invest Ophthalmol Vis Sci. 2000;41(6):1249–58.

    CAS  PubMed  Google Scholar 

  66. Hung LF, Wallman J, Smith 3rd EL. Vision-dependent changes in the choroidal thickness of macaque monkeys. Invest Ophthalmol Vis Sci. 2000;41(6):1259–69.

    CAS  PubMed  Google Scholar 

  67. Rohrer K, Frueh BE, Walti R, et al. Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer. Ophthalmology. 2009;116(11):2087–92.

    Article  PubMed  Google Scholar 

  68. Brown JS, Flitcroft DI, Ying GS, et al. In vivo human choroidal thickness measurements: evidence for diurnal fluctuations. Invest Ophthalmol Vis Sci. 2009;50(1):5–12.

    Article  PubMed  Google Scholar 

  69. Ho J, Branchini L, Regatieri C, et al. Analysis of normal peripapillary choroidal thickness via spectral domain optical coherence tomography. Ophthalmology. 2011;118(10):2001–7.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Tanabe H, Ito Y, Terasaki H. Choroid Is thinner in inferior region of optic disks of normal eyes. Retina. 2012;32(1):134–9.

    Article  PubMed  Google Scholar 

  71. Fong AH, Li KK, Wong D. Choroidal evaluation using enhanced depth imaging spectral-domain optical coherence tomography in Vogt-Koyanagi-Harada disease. Retina. 2011;31(3):502–9.

    Article  PubMed  Google Scholar 

  72. Chui TY, Song H, Burns SA. Individual variations in human cone photoreceptor packing density: variations with refractive error. Invest Ophthalmol Vis Sci. 2008;49(10):4679–87.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Fujiwara T, Imamura Y, Margolis R, et al. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol. 2009;148(3):445–50.

    Article  PubMed  Google Scholar 

  74. Spaide RF. Age-related choroidal atrophy. Am J Ophthalmol. 2009;147:801–10.

    Article  PubMed  Google Scholar 

  75. Moriyama M, Ohno-Matsui K, Futagami S, et al. Morphology and long-term changes of choroidal vascular structure in highly myopic eyes with and without posterior staphyloma. Ophthalmology. 2007;114(9):1755–62.

    Article  PubMed  Google Scholar 

  76. Quaranta M, Arnold J, Coscas G, et al. Indocyanine green angiographic features of pathologic myopia. Am J Ophthalmol. 1996;122(5):663–71.

    CAS  PubMed  Google Scholar 

  77. Akyol N, Kukner AS, Ozdemir T, Esmerligil S. Choroidal and retinal blood flow changes in degenerative myopia. Can J Ophthalmol. 1996;31(3):113–9.

    CAS  PubMed  Google Scholar 

  78. Ikuno Y, Tano Y. Retinal and choroidal biometry in highly myopic eyes with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2009;50(8):3876–80.

    Article  PubMed  Google Scholar 

  79. Nishida Y, Fujiwara T, Imamura Y, et al. Choroidal thickness and visual acuity in highly myopic eyes. Retina. 2012;32(7):1229–36.

    PubMed  Google Scholar 

  80. Saw SM, Gazzard G, Shih-Yen EC, Chua WH. Myopia and associated pathological complications. Ophthalmic Physiol Opt. 2005;25(5):381–91.

    Article  PubMed  Google Scholar 

  81. Vongphanit J, Mitchell P, Wang JJ. Population prevalence of tilted optic disks and the relationship of this sign to refractive error. Am J Ophthalmol. 2002;133(5):679–85.

    Article  PubMed  Google Scholar 

  82. Freund KB, Ciardella AP, Yannuzzi LA, et al. Peripapillary detachment in pathologic myopia. Arch Ophthalmol. 2003;121:197–204.

    Article  PubMed  Google Scholar 

  83. Shimada N, Ohno-Matsui K, Nishimuta A, Tokoro T, Mochizuki M. Peripapillary changes detected by optical coherence tomography in eyes with high myopia. Ophthalmology. 2007;114:2070–6.

    Article  PubMed  Google Scholar 

  84. Shimada N, Ohno-Matsui K, Yoshida T, et al. Characteristics of peripapillary detachment in pathologic myopia. Arch Ophthalmol. 2006;124:46–52.

    Article  PubMed  Google Scholar 

  85. Tateno H, Takahashi K, Fukuchi T, Yamazaki Y, Sho K, Matsumura M. Choroidal schisis around the optic nerve in myopic eyes evaluated by optical coherence tomography. Jpn J Clin Ophthalmol. 2005;59:327–31.

    Google Scholar 

  86. Toranzo J, Cohen SY, Erginay A, Gaudric A. Peripapillary intrachoroidal cavitation in myopia. Am J Ophthalmol. 2005;140:731–2.

    Article  PubMed  Google Scholar 

  87. Wei YH, Yang CM, Chen MS, Shih YF, Ho TC. Peripapillary intrachoroidal cavitation in high myopia: reappraisal. Eye (Lond). 2009;23:141–4.

    Article  Google Scholar 

  88. Forte R, Pascotto F, Cennamo G, de Crecchio G. Evaluation of peripapillary detachment in pathologic myopia with en face optical coherence tomography. Eye (Lond). 2008;22:158–61.

    Article  CAS  Google Scholar 

  89. Shimada N, Ohno-Matsui K, Iwanaga Y, Tokoro T, Mochizuki M. Macular retinal detachment associated with peripapillary detachment in pathologic myopia. Int Ophthalmol. 2009;29:99–102.

    Article  PubMed  Google Scholar 

  90. Spaide RF, Akiba M, Ohno-Matsui K. Evaluation of peripapillary intrachoroidal cavitation with swept source and enhanced depth imaging optical coherence tomography. Retina. 2012;32:1037–44.

    Article  PubMed  Google Scholar 

  91. Ohno-Matsui K, Akiba M, Moriyama M, Ishibashi T, Hirakata A, Tokoro T. Intrachoroidal cavitation in macular area of eyes with pathologic myopia. Am J Ophthalmol. 2012;154(2):382–93.

    Article  PubMed  Google Scholar 

  92. Jampol LM, Shankle J, Schroeder R, Tornambe P, Spaide RF, Hee MR. Diagnostic and therapeutic challenges. Retina. 2006;26(9):1072–6.

    Article  PubMed  Google Scholar 

  93. Wakabayashi Y, Nishimura A, Higashide T, Ijiri S, Sugiyama K. Unilateral choroidal excavation in the macula detected by spectral-domain optical coherence tomography. Acta Ophthalmol. 2010;88(3):e87–91.

    Article  PubMed  Google Scholar 

  94. Margolis R, Mukkamala SK, Jampol LM, Spaide RF, Ober MD, Sorenson JA, Gentile RC, Miller JA, Sherman J, Freund KB. The expanded spectrum of focal choroidal excavation. Arch Ophthalmol. 2011;129(10):1320–5.

    Article  PubMed  Google Scholar 

  95. Maruko I, Iida T, Sugano Y, Oyamada H, Sekiryu T, Fujiwara T, Spaide RF. Subfoveal choroidal thickness after treatment of Vogt-Koyanagi-Harada disease. Retina. 2011;31:510–7.

    Article  PubMed  Google Scholar 

  96. Imamura Y, Fujiwara T, Margolis R, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina. 2009;29:1469–73.

    Article  PubMed  Google Scholar 

  97. Harris A, Kagemann L, Ehrlich R, Ehrlich Y, López CR, Purvin VA. The effect of sildenafil on ocular blood flow. Br J Ophthalmol. 2008;92:469–73.

    Article  CAS  PubMed  Google Scholar 

  98. Vance SK, Imamura Y, Freund KB. The effects of sildenafil citrate on choroidal thickness as determined by enhanced depth imaging optical coherence tomography. Retina. 2011;31:332–5.

    Article  CAS  PubMed  Google Scholar 

  99. Ohno-Matsui K, Akiba M, Moriyama M, Ishibashi T, Tokoro T, Spaide RF. Imaging retrobulbar subarachnoid space around optic nerve by swept-source optical coherence tomography in eyes with pathologic myopia. Invest Ophthalmol Vis Sci. 2011;52:9644–50.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

Sarah Mjeren, MD, provided assistance in assembling the references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard F. Spaide MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Spaide, R.F. (2014). The Choroid. In: Spaide, R., Ohno-Matsui, K., Yannuzzi, L. (eds) Pathologic Myopia. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8338-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8338-0_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8337-3

  • Online ISBN: 978-1-4614-8338-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics