Skip to main content

Chickpea Phenotyping

  • Chapter
  • First Online:
Phenotyping for Plant Breeding
  • 2027 Accesses

Abstract

The phenotype is known as a reflection of dynamic interaction between the genome, environmental conditions and the multiple plant responses that determines the plant performance. The phenotype is the final goal for plant breeders. Phenotyping is the basis of plant selection and has been going on for millennia. Breeders have done phenotyping since the beginning of the art. Nowadays phenotyping is used as a powerful approach in several plants improvement programs particularly for stress resistance/tolerace breeding. Recent advances in phenomics, genomics and bioinformatics provide the possibility of undertaking large scale screening and sequencing of germplasm accessions so that modern breeding approaches can be realized in near future for chickpea improvement. This article reviews some basic concepts of phenotyping, types of the employed methods and bioassays referring to important biotic and abiotic stresses, and continues with answering the question “how phenotypic data can be integrated with genotypic data?” It concluded with a discussion about gains which have been made with molecular assisted breeding (MAB) in chickpea and opportunities for MAB in chickpea in the immediate future are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Monaim MF (2011) Integrated management of damping-off, root and/or stem rot diseases of chickpea and efficacy of the suggested formula. Not Sci Biol 3(3):80–88

    CAS  Google Scholar 

  • Ahmad F, Gaur PM, Croser J (2005) Chickpea (Cicer arietinum L.). In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering and crop improvement, vol 1. CRC, Grain Legumes, pp 187–217

    Google Scholar 

  • Allard RW (1999) Principles of plant breeding, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  • Allard RW, Bradshaw AD (2005) Implications of genotype-environmental interactions in applied plant breeding. Crop Sci 4:503–508

    Article  Google Scholar 

  • Bänziger M, Edmeades GO, Beck D, Bellon M (2000) Breeding for drought and nitrogen stress tolerance in maize: from theory to practice. D.F. CIMMYT, Mexico

    Google Scholar 

  • Baranger BTA et al (2006) Screening techniques and sources of resistance to foliar diseases caused by major necrotrophic fungi in grain legumes. Euphytica 147:223–253

    Article  Google Scholar 

  • Beebe SE, Rao IM, Blair MW, Acosta-Gallegos JA (2011) Phenotyping common beans for adaptation to drought. In: Ribaut JM, Monneveux P (eds) Drought phenotyping in crops: from theory to practice. Generation Challenge Program Special Issue on Phenotyping. Available from: http://www.ciat.cgiar.org/Newsroom/pdf/field_evaluation_final.pdf. Cited 17 Oct 2011

  • Berger JD, Turner NC (2007) The ecology of chickpea. In: Yadav SS, Redden R, Chen W, Sharma B (eds) Chickpea breeding and management. CABI, Wallingford, pp 47–71

    Google Scholar 

  • Berilli APCG, Pereira MG, Gonçalves LSA, da Cunha KS, Ramos HCC, Souza Filho GA et al (2011) Use of molecular markers in reciprocal recurrent selection of maize increases heterosis effects. Genet Mol Res 10(4):2589–2596

    Article  PubMed  CAS  Google Scholar 

  • Bernardo R (2004) What proportion of declared QTL in plants are false? Theor Appl Genet 109:419–424

    Article  PubMed  CAS  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48(5):1649–1664

    Article  Google Scholar 

  • Bhatnagar-Mathur P, Rao JS, Vadez V, Sharma KK (2010) Transgenic strategies for improved drought tolerance in legumes of semi-arid tropics. In: Kang MS (ed) Water and agricultural sustainability strategies. CRC, Boca Raton, pp 261–277

    Google Scholar 

  • Birch CJ, Andrieu B, Fournier C, Vos J, Room P (2003) Modelling kinetics of plant canopy architecture–concepts and applications. Eur J Agron 194:519–533. [Internet]. Available from: http://espace.library.uq.edu.au/eserv.php?pid=UQ:9535&dsID=Modelling_kineti. August 2003

    Google Scholar 

  • Buhariwalla HK, Jayas Hree B, Eshwar K, Crouch JH (2005) ESTs from chickpea roots with putative roles in drought tolerance. BMC Plant Biol 5:16

    Google Scholar 

  • Carmen de Vicente M (ed) (2004) The evolving role of gene banks in the fast developing field of molecular genetics. [Internet]. Genetic Resources Science and Technology (GRST) IPGRI, Rome. Available from: http://sgrp.cgiar.org/?q=node/640

  • Cattivelli L, Rizza F, Badeck F, Mazzucotelli E, Mastrangelo A, Francia E et al (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105(1–2):1–14

    Article  Google Scholar 

  • Ceccarelli S (1996) Positive interpretation of genotype by environment interactions in relation to sustainability and biodiversity. In: Cooper M, Hammer GL (eds) Plant adaptation and crop improvement. CAB International, Wallingford, pp 467–486

    Google Scholar 

  • Chaturvedi SK, Nadarajan N (2010) Genetic enhancement for grain yield in chickpea, accomplishments and resetting research agenda. Electron J Plant Breed 1(4):611–615

    Google Scholar 

  • Chen X, Zhao F, Xu S (2010) Mapping environment-specific quantitative trait loci. Genetics 186(3):1053–1066

    Article  PubMed  CAS  Google Scholar 

  • Chopra P, Kamma A (2011) Genetically modified crops in India—the current status of GM crops in India. [Internet]. Available from: http://paraschopra.com/publications/gm. Accessed 15 Sept 2011

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486

    Article  PubMed  CAS  Google Scholar 

  • Croser JS, Clarke HJM, Siddique KH, Khan TN (2003) Low-temperature stress: implications for chickpea (Cicer arietinum) improvement. Crit Rev Plant Sci 22(2):185–219

    Article  Google Scholar 

  • Di Vito M, Singh KB, Greco N, Saxena MC (1996) Sources of resistance to cyst nematode in cultivated and wild Cicer species. Genet Resour Crop Evol 43(2):103–107

    Article  Google Scholar 

  • Eberhardt M, Teal F (2009) A common factor approach to spatial heterogeneity in agricultural productivity analysis. [MPRA Paper on the Internet]. Available from: http://mpra.ub.uni-muenchen.de/15810/. Updated 13 May 2009; cited 18 June 2009

  • Faller D, Klingmüller U, Timmer J (2003) Simulation methods for optimal experimental design in systems biology. Simulation 79:717–725

    Article  Google Scholar 

  • FAO [Homepage on the Internet] (2010) Rome: FAOSTAT data; c2008–2009. FAOSTAT | © FAO Statistics Division 2010. Available from: http://faostat.fao.org. Cited 23 Aug 2010

  • Furbank RT, Tester M (2011) Phenomics – technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16(12):635–644

    Article  PubMed  CAS  Google Scholar 

  • Furbank RT, von Caemmerer S, Sheehy J, Edwards G (2009) C4 rice: a challenge for plant phenomics. Funct Plant Biol 36:845–856

    Article  Google Scholar 

  • Gaur PM, Slinkard AE (1990) Genetic control and linkage relations of additional isozyme markers in chickpea. Theor Appl Genet 80:648–656

    Article  CAS  Google Scholar 

  • Haware MP, Nene YL (1982) Races of Fusarium oxysporum f. sp. ciceri. Plant Dis 66:809–810

    Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: potential gain per unit time and cost. Crop Sci 50:1681–1690

    Article  Google Scholar 

  • Hussain SS (2006) Molecular breeding for abiotic stress tolerance: drought perspective. Proc Pakistan Acad Sci 43(3):189–210

    CAS  Google Scholar 

  • Indian Institute of Pulses Research [Homepage on the Internet] (2010) Kanpur: 208024. Available from: http://www.iipr.res.in/aicrp_chickpea.htm. Updated 1 Sept 2012; cited 6 Sept 2012

  • Infantino A, Porta-Pugalia A, Singh KB (1996) Screening wild Cicer species for resistance to fusarium wilt. Plant Dis 80:42–44

    Article  Google Scholar 

  • Jain D, Chattopadhyay D (2010) Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance. BMC Plant Biol 10:24

    Article  PubMed  Google Scholar 

  • Jimenez-Diaz RM, Trap Ero-Crass A, Car Bera De LA, Coina J (1989) Races of Fusarium oxysporum f. sp. Ciceri infecting chickpeas in Southern Spain. In: Tjamos EC, Beckman CH (eds) Vascular wilt diseases of plants. NATO ASI Series H, pp 515–520

    Google Scholar 

  • Kamoshita A, Babu RC, Boopathi NM, Fukai S (2008) Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crop Res 109:1–23

    Article  Google Scholar 

  • Karp A (2002) The new genetic era: will it help us in managing genetic diversity? In: Engls JMM, Ramanatha RV, Brown AHD, Jackson MT (eds) Managing plant genetic diversity. CAB International and IPGRI, Wallingford and Rome, pp 43–56

    Google Scholar 

  • Khan R, Farhatullah, Khan H (2011) Dissection of genetic variability and heritability estimates of chickpea germplasm for various morphological markers and quantitative traits. Sarhad J Agric 27(1):67–72

    Google Scholar 

  • Kotamäki N, Thessler S, Koskiaho J, Hannukkala AO, Huitu H, Huttula T et al (2009) Wireless in-situ sensor network for agriculture and water monitoring on a river basin scale in southern Finland: Evaluation from a data user’s perspective. Sensors 9:2862–2883

    Article  PubMed  Google Scholar 

  • Kulwal PL, Thudi M, Varshney RK (2012) Genomics interventions in crop breeding for sustainable agriculture. In: Meyers RA (ed) Encyclopedia of sustainability science and technology. [Internet]. Science and Technology. Springer, New York. Available from: http://ec2-50-19-248-237.compute-1.amazonaws.com/59/1/merged_document.pdf

  • Kumar J, Choudhary AK, Solanki RK, Pratap A (2011) Towards marker-assisted selection in pulses. Plant Breed 130(3):297–312

    Article  CAS  Google Scholar 

  • Labdi M, Robertson LD, Singh KB, Charrier A (1996) Genetic diversity and phylogenetic relationships among the annual Cicer species as revealed by isozyme polymorphism. Euphytica 88:181–188

    Article  CAS  Google Scholar 

  • Lichitenzveiz J, Bonfil DJ, Zhang HB, Shtienberg D, Abbo S (2006) Mapping quantitative trait loci in chickpea associated with time to flowering and resistance to Didymella rabiei the causal agent of Ascochyta blight. Theor Appl Genet 113:1357–1369

    Google Scholar 

  • Messina CD, Podlich D, Dong Z, Samples M, Cooper M (2011) Yield–trait performance landscapes: from theory to application in breeding maize for drought tolerance. J Exp Bot 62(3): 855–868

    Article  PubMed  CAS  Google Scholar 

  • Millan T, Clarke HJ, Siddique KHM, Buhariwalla HK, Gaur PM, Kumar J et al (2006) Chickpea molecular breeding—new tools and concepts. Euphytica 147:81–83

    Article  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 2(61):443–462

    Article  Google Scholar 

  • Montes JM, Melchinger AE, Reif JC (2007) Novel throughput phenotyping platforms in plant genetic studies. Trends Plant Sci 12(10):433–436

    Article  PubMed  CAS  Google Scholar 

  • Morris M, Edmeades G, Pehu E (2006) The global need for plant breeding capacity: what roles for the public and private sectors? Hort Sci 41(1):30–40

    Google Scholar 

  • Muehlbauer FJ, Rajesh PN (2008) Chickpea, a common source of protein and starch in the semi-arid tropics. Plant Genet Genom Crops Models 1:171–186

    Article  Google Scholar 

  • Muehlbauer FJ, Tullu A (2012) Cicer arietinum L. NewCROP FactSHEET. [Internet]. Center for New Crops and Plant Products, Purdue University, West Lafayette. Available from: http://www.hort.purdue.edu/newcrop/cropfactsheets/Chickpea.html. Cited 19 Jan 2012

  • Muehlbauer FJ, Kaiser WJ, Simon CJ (2004) Potential for wild species in cool season food legume breeding. Euphytica 73:109–114

    Article  Google Scholar 

  • Nasir M, Bretag TW, Kaiser WJ, Meredith KA, Brouwer JB (2000) Screening chickpea germplasm for Ascochyta blight resistance. Australasian Plant Pathol 29:102–107

    Article  Google Scholar 

  • Nene YL, Haware MP (1980) Screening chickpea for resistance to wilt. Plant Dis 64:379–380

    Article  Google Scholar 

  • Ozkan B, Akcaoz H (2002) Impacts of climate factors on yields for selected crops in the Southern Turkey. Mitig Adapt Strat Glob Chang 7(4):367–380

    Article  Google Scholar 

  • Padilla FLM, González-Dugo MP, Gavilán P, Domínguez J (2011) Integration of vegetation indices into a water balance model to estimate evapotranspiration of wheat and corn. Hydrol Earth Syst Sci 15:1213–1225

    Google Scholar 

  • Patankar AG, Hars Ulkar AM, Giri AP, Gupta VS, Sainani MN, Ranjekar PK et al (1999) Diversity in inhibitors of trypsin and Helicoverpa armigera guts proteinases in chickpea (Cicer arietinum) and its wild relatives. Theor Appl Genet 99:719–726

    Google Scholar 

  • Peccoud J, Velden KV, Podlich D, Winkler C, Arthur L, Cooperm M (2004) The selective values of alleles in a molecular network model are context dependent. Genetics 166:1715–1725

    Article  PubMed  CAS  Google Scholar 

  • Pfaff T, Kahl G (2003) Mapping of gene-specific markers on the genetic map of chickpea(Cicer arietinum L.). Mol Gen Genom 269:243–251

    CAS  Google Scholar 

  • Popelka JC, Higgins TJV (2007) Application of transformation technology to chickpea and its potential. In: Pua E-C, Davey MR (eds) Biotechnology in agriculture and forestry, transgenic crops. vol IV. Springer, Berlin, pp 259–260

    Google Scholar 

  • Rajesh PN, O’Bleness M, Roe BA, Muehlbauer FJ (2008) Analysis of genome organization, composition and microsynteny using 500 kb BAC sequences in chickpea. Theor Appl Genet 117: 449–458

    Article  PubMed  CAS  Google Scholar 

  • Saeed A, Darvishzadeh R, Hovsepyan H, Asatryan A (2010) Tolerance to freezing stress in Cicer accessions under controlled and field conditions. Afr J Biotechnol 9(18):2618–2626

    Google Scholar 

  • Saeed A, Hovsepyan H, Darvishzadeh R, Imtiaz M, Panguluri SK, Nazaryan R (2011) Molecular genetic diversity in Iranian accessions, improved lines of chickpea and their wild relatives. Plant Mol Biol Rep 29:848–858

    Article  CAS  Google Scholar 

  • Salvi S, Tuberosa R (2007) Cloning QTLs in plants. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement, vol 1. Genomics approaches and platforms. Springer, New York, pp 207–226

    Google Scholar 

  • Samineni S, Siddique KHM, Gaur PM, Colmer TD (2011) Salt sensitivity of the vegetative and reproductive stages in chickpea (Cicer arietinum L.): podding is a particularly sensitive stage. Environ Exp Bot 71:260–268

    Google Scholar 

  • Saxena MC (1993) The challenge of developing biotic and abiotic stress resistance in cool-season food legumes. In: Singh KB, Saxena MC (eds) Breeding for stress tolerance in cool-season food legumes. ICARDA/Wiley, Chichester, pp 3–14

    Google Scholar 

  • Scott J, Gordon T, Kirkpatrick S, Koike S, Matheron M, Ochoa O et al (2012) Crop rotation and genetic resistance reduce risk of damage from Fusarium wilt in lettuce. Cal Ag 66(1):20–24

    Article  Google Scholar 

  • Semagn K, Bjørnstad Å, Xu Y (2010) The genetic dissection of quantitative traits in crops. Electron J Biotechnol. [Internet]. Available from: http://dx.doi.org/10.2225/vol13-issue5-fulltext-14

  • Sen S, Johannes F, Broman KW (2009) Selective genotyping and phenotyping strategies in a complex trait context. Genetics 181:1613–1626

    Google Scholar 

  • Serraj R, Krishnamurthy L, Upadhyaya HD (2004) Screening chickpea mini-core germplasm for tolerance to soil salinity. Int Chickpea Pigeonpea Newslett 29–32

    Google Scholar 

  • Sharma KD, Winter P, Kahl G, Muehlbauer FJ (2004) Molecular mapping of Fusarium oxysporum f. sp. ciceris race 3 resistance gene in chickpea. Theor Appl Genet 108:1243–1246

    Article  PubMed  CAS  Google Scholar 

  • Sharma KD, Chen W, Muehlbauer FJ (2005) Genetics of chickpea resistance to five races of Fusarium wilt and a concise set of race differentials for Fusarium oxysporum f. sp. ciceris. Plant Dis 89:385–390

    Google Scholar 

  • Siddique KHM, Brinsmead RB, Knight R, Knights EJ, Paull JG, Rose IA (2000) Adaptation of chickpea (Cicer arietinum L.) and faba bean (Vicia faba L.) to Australia. Linking research and marketing opportunities for pulses in the. [Monograph on the Internet]. Kluwer Academic, Dordrecht. Available from: http://www.cabdirect.org/abstracts/20001609658.html;jsessionid=BD1587A6FB422BA5C3DE380926A13A00. Cited 1 July 2012

  • Siddique KHM, Regan KL, Baker MJ (2012) New ascochyta blight resistant, high quality kabuli chickpea varieties for Australia. [Internet]. In: 4th international crop science congress, Brisbane. Available from: www.cropscience.org.au. Cited 10 Jan 2012

  • Singh KB (1997) Chickpea (Cicer arietinum L). Field Crops Res 53:161–170

    Article  Google Scholar 

  • Singh RP, Singh BD (1989) Recovery of rare interspecific hybrids of gram Cicer arietinum × C. cuneatum L. through tissue culture. Curr Sci 58:874–876

    Google Scholar 

  • Singh KB, Weigand S (1994) Identification of resistant sources in Cicer species to Liriomyza cicerina. Genet Resour Crop Evol 41:75–79

    Article  Google Scholar 

  • Singh KB, Malhotra RS, Saxena MC (1995) Additional sources of tolerance to cold in cultivated and wild Cicer species. Crop Sci 35:1491–1497

    Article  Google Scholar 

  • Singh KB, Ocampo B, Robertson LD (1998) Diversity for abiotic and biotic stress resistance in the wild annual Cicer species. Genet Resour Crop Evol 45:9–17

    Article  Google Scholar 

  • Singh R, Sharma P, Varshney RK, Sharma SK, Singh NK (2008) Chickpea improvement: role of wild species and genetic markers. Biotechnol Genet Eng Rev 25:267–314

    Article  PubMed  CAS  Google Scholar 

  • Sivakumar MVK, Roy PS, Harsen K, Saha SK (2004) Satellite remote sensing and GIS applications in agricultural meteorology. [Monograph on the Internet]. World Meteorological Organization (WMO), Washington. Available from: http://www.wmo.int/pages/prog/wcp/agm/publications/AGM8_en.php. Cited 9 July 2012

  • Stafford W (2009) Marker Assisted Selection (MAS) Key issues for Africa. Biosafety, biopiracy and biopolitics series. The African Centre for Biosafety, p 52

    Google Scholar 

  • Stoddard FL, Balko C, Erskine W, Khan HR, Link W, Sarker A (2006) Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147:167–186

    Article  Google Scholar 

  • Stuber CW (1994) Heterosis in plant breeding. Plant Breed Rev 12:227–251

    Google Scholar 

  • Stuber C, Polacco M, Senior M (1999) Synergy of empirical breeding, marker assisted selection and genomics to increase crop yield potential. Crop Sci 39:1571–1583

    Article  Google Scholar 

  • Sun Y, Wang J, Crouch JH, Xu Y (2010) Efficiency of selective genotyping for genetic analysis of complex traits and potential applications in crop improvement. Mol Breed 26:493–511

    Article  Google Scholar 

  • Tadele Z, Chikelu MBA, Bradley J (2010) Tilling for mutations in model plants and crops. In: Jain TM, Brar DS (eds) Molecular techniques ill crop improvement. Springer, Berlin pp 307–332

    Google Scholar 

  • Tardieu F, Schurr U (2009) [Internet] White paper on plant phenotyping. In: EPSO workshop on plant phenotyping, Jülich. Available from: http://www.plantphenomics.com/phenotyping. Cited 26 Dec 2009

  • Taylor PWJ, Ford R (2007) Chickpea. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 3. Pulses, sugar and tuber crop. Springer, Berlin, p 306

    Google Scholar 

  • Toker C (2005) Preliminary screening and selection for cold tolerance in annual wild Cicer species. Genet Res Crop Evol 52:1–5

    Article  Google Scholar 

  • Toker C, Lluch C, Tejera NA, Serraj R, Siddique KHM (2007) Abiotic stresses. In: Yadav SS, Redden B, Chen W, Sharma B (eds) Chickpea breeding and management. CAB Int, Wellingford, pp 474–496

    Chapter  Google Scholar 

  • Tsaftaris SA, Noutsos C (2009) Plant phenotyping with low cost digital cameras and image analytics. In: Athanasiadis IN, Mitkas PA, Rizzoli AE (eds) Information technologies in environmental engineering, environmental science and engineering, vol 2. Springer, Berlin, pp 238–251

    Google Scholar 

  • Tuberosa R (2010) Phenotyping drought-stressed crops: key concepts, issues and approaches. In: Monneveux P, Ribaut JM (eds) Drought phenotyping in crops: from theory to practice. CIMMYT/Generation Challenge Programme, Mexico, pp 3–35

    Google Scholar 

  • Tuberosa R (2012) Phenotyping for drought tolerance of crops in the genomics era. Front Physiol 3:347

    Article  PubMed  Google Scholar 

  • Udupa SM, Sharma A, Sharma RP, Pai RA (1993) Narrow genetic variability in Cicer arietinum as revealed by RFLP analysis. J Plant Biochem Biotechnol 2:83–86

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Kashiwagi J, Varshney RK, Gaur PM, Saxena KB, Krishnamurthy L et al (2010) Phenotyping chickpeas and pigeonpeas for adaptation to drought. In: Drought phenotyping in crops: from theory to practice. Generation Challenge Programme [Internet]. ICRISAT, India. Available from: http://oar.icrisat.org/1376/. Updated 12 Sept 2011

  • Upadhyaya HD, Thudi M, Dronavalli N, Gujaria N, Singh S, Sharma S et al (2011) Genomic tools and germplasm diversity for chickpea improvement. Plant Genet Resour 9(1):45–58

    Article  CAS  Google Scholar 

  • Vankadavath R, Hussain A, Bodanapu R, Kharshiing E, Basha PO, Gupta S et al (2009) Computer aided data acquisition tool for high-throughput phenotyping of plant populations. Plant Methods 5:18–27

    Article  PubMed  Google Scholar 

  • Varaprasad KS, Sivaraj N (2009) Plant genetic resources conservation and use in light of recent policy developments. Electron J Plant Breed 1(4):1276–1293

    Google Scholar 

  • Walter A, Silk WK, Schurr U (2009) Environmental effects on spatial and temporal patterns of leaf and root growth. Plant Biol 60:279–304

    Article  CAS  Google Scholar 

  • Wery J (1990) Adaptation to frost and drought stress in chickpea and implications in plant breeding. In: Saxena MC, Cubero JI, Wery J (eds) Present status and future prospects of chickpea crop production and improvement in the Mediterranean countries. Options Mediterraneennes Serie Seminaires No. 9 CIHEAM, Paris, pp 77–85

    Google Scholar 

  • WIEWS-FAO [Internet] (2009) World Information and Early Warning System on plant genetic resources for food and agriculture. Available from: http://apps3.fao.org/wiews/wiews.jsp. Cited 12 Nov 2009

  • Witt S, Galicia L, Lisec J, Cairns J, Tiessen A, Araus JL et al (2012) Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally controlled drought stress. Mol Plant 5(2):401–417

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Stamb P, Kropffa MJ, Schapendonk HCM (2003) Crop modeling, QTL mapping, and their complementary role in plant breeding. Agron J 95(1):90–98

    Article  CAS  Google Scholar 

  • Zaman-Allah M, Jenkinson DM, Vadez V (2011) Chickpea genotypes contrasting for seed yield under terminal drought stress in the field differ for traits related to the control of water use. Funct Plant Biol 38:1–12

    Article  Google Scholar 

  • Zhang W, Li F, Nie L (2010) Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies. Microbiology 156(2):287–301

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siva Kumar Panguluri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saeed, A., Panguluri, S.K. (2013). Chickpea Phenotyping. In: Panguluri, S., Kumar, A. (eds) Phenotyping for Plant Breeding. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8320-5_4

Download citation

Publish with us

Policies and ethics