Skip to main content

Autophagy in Necrosis: A Force for Survival

  • Chapter
  • First Online:
Necrotic Cell Death

Part of the book series: Cell Death in Biology and Diseases ((CELLDEATH))

  • 1545 Accesses

Abstract

Macroautophagy or autophagy is an evolutionarily well-conserved cellular mechanism by which the cellular contents are engulfed by autophagosomes and delivered to lysosomes for degradation. At present, the involvement of autophagy in cell death remains a highly controversial and debatable topic. On the one hand, it has been well established that autophagy is an important mechanism protecting cells under stress such as starvation via provision of nutrients and removal of protein aggregates and damaged mitochondria. On the other hand, there is accumulating evidence suggesting pro-death function of autophagy, either via promotion of apoptosis or autophagic cell death. At present, the molecular cross talk between autophagy and apoptosis have been well discussed, while the relationship between autophagy and various forms of programmed necrotic cell death is less understood. In this chapter we focus on the role of autophagy in necrotic cell death. We first present the evidence showing the anti-necrosis function of autophagy, and then discuss the biological significance of the anti-necrosis function of autophagy in cancer and ischemia–reperfusion injury. Taken together, we believe that one important aspect of the pro-survival function of autophagy is achieved via its ability to block various forms of necrotic cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert JM, Cao C, Kim KW, Willey CD, Geng L, Xiao D, Wang H, Sandler A, Johnson DH, Colevas AD, Low J, Rothenberg ML, Lu B (2007) Inhibition of poly(ADP-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin Cancer Res 13:3033–3042

    PubMed  CAS  Google Scholar 

  • Alexander A, Cai SL, Kim J, Nanez A, Sahin M, MacLean KH, Inoki K, Guan KL, Shen J, Person MD, Kusewitt D, Mills GB, Kastan MB, Walker CL (2010) ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci U S A 107:4153–4158

    PubMed Central  PubMed  CAS  Google Scholar 

  • Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117:326–336

    PubMed Central  PubMed  CAS  Google Scholar 

  • Anders CK, Winer EP, Ford JM, Dent R, Silver DP, Sledge GW, Carey LA (2010) Poly(ADP-Ribose) polymerase inhibition: “targeted” therapy for triple-negative breast cancer. Clin Cancer Res 16:4702–4710

    PubMed Central  PubMed  CAS  Google Scholar 

  • Betin VM, Lane JD (2009) Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. J Cell Sci 122:2554–2566

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bursch W (2001) The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 8:569–581

    PubMed  CAS  Google Scholar 

  • Bustin M (2002) At the crossroads of necrosis and apoptosis: signaling to multiple cellular targets by HMGB1. Sci STKE 2002:pe39

    PubMed  Google Scholar 

  • Carew JS, Nawrocki ST, Kahue CN, Zhang H, Yang C, Chung L, Houghton JA, Huang P, Giles FJ, Cleveland JL (2007) Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110(1):313–322

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cecconi F, Levine B (2008) The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell 15:344–357

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chan EY, Tooze SA (2009) Evolution of Atg1 function and regulation. Autophagy 5:758–765

    PubMed  CAS  Google Scholar 

  • Chen N, Debnath J (2010) Autophagy and tumorigenesis. FEBS Lett 584:1427–1435

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–1123

    PubMed Central  PubMed  CAS  Google Scholar 

  • Christofferson DE, Yuan J (2010) Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol 22:263–268

    PubMed Central  PubMed  CAS  Google Scholar 

  • Colell A, Ricci JE, Tait S, Milasta S, Maurer U, Bouchier-Hayes L, Fitzgerald P, Guio-Carrion A, Waterhouse NJ, Li CW, Mari B, Barbry P, Newmeyer DD, Beere HM, Green DR (2007) GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129:983–997

    PubMed  CAS  Google Scholar 

  • Colell A, Green DR, Ricci JE (2009) Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ 16:1573–1581

    PubMed  CAS  Google Scholar 

  • Corcelle EA, Puustinen P, Jaattela M (2009) Apoptosis and autophagy: targeting autophagy signalling in cancer cells—‘trick or treats’? FEBS J 276:6084–6096

    PubMed  CAS  Google Scholar 

  • de Bruin EC, Medema JP (2008) Apoptosis and non-apoptotic deaths in cancer development and treatment response. Cancer Treat Rev 34:737–749

    PubMed  Google Scholar 

  • Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gelinas C, Fan Y, Nelson DA, Jin S, White E (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10:51–64

    PubMed Central  PubMed  CAS  Google Scholar 

  • Degterev A, Yuan J (2008) Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 9:378–390

    PubMed  CAS  Google Scholar 

  • Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    PubMed  CAS  Google Scholar 

  • Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321

    PubMed  CAS  Google Scholar 

  • Denton D, Shravage B, Simin R, Mills K, Berry DL, Baehrecke EH, Kumar S (2009) Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Curr Biol 19:1741–1746

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dikic I, Johansen T, Kirkin V (2010) Selective autophagy in cancer development and therapy. Cancer Res 70:3431–3434

    PubMed  CAS  Google Scholar 

  • Ditsworth D, Zong WX, Thompson CB (2007) Activation of poly(ADP)-ribose polymerase (PARP-1) induces release of the pro-inflammatory mediator HMGB1 from the nucleus. J Biol Chem 282:17845–17854

    PubMed Central  PubMed  CAS  Google Scholar 

  • Djavaheri-Mergny M, Maiuri MC, Kroemer G (2010) Cross talk between apoptosis and autophagy by caspase-mediated cleavage of Beclin 1. Oncogene 29:1717–1719

    PubMed  CAS  Google Scholar 

  • Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669

    PubMed  CAS  Google Scholar 

  • Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–461

    PubMed Central  PubMed  CAS  Google Scholar 

  • Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A (2009) Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ 16:966–975

    PubMed  CAS  Google Scholar 

  • Ethier C, Tardif M, Arul L, Poirier GG (2012) PARP-1 modulation of mTOR signaling in response to a DNA alkylating agent. PLoS One 7:e47978

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fiers W, Beyaert R, Declercq W, Vandenabeele P (1999) More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18:7719–7730

    PubMed  CAS  Google Scholar 

  • Fimia GM, Piacentini M (2010) Regulation of autophagy in mammals and its interplay with apoptosis. Cell Mol Life Sci 67:1581–1588

    PubMed  CAS  Google Scholar 

  • Fragkos M, Beard P (2011) Mitotic catastrophe occurs in the absence of apoptosis in p53-null cells with a defective G1 checkpoint. PLoS One 6:e22946

    PubMed Central  PubMed  CAS  Google Scholar 

  • Galluzzi L, Vicencio JM, Kepp O, Tasdemir E, Maiuri MC, Kroemer G (2008) To die or not to die: that is the autophagic question. Curr Mol Med 8:78–91

    PubMed  CAS  Google Scholar 

  • Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nunez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120

    PubMed Central  PubMed  CAS  Google Scholar 

  • Giansanti V, Torriglia A, Scovassi AI (2011) Conversation between apoptosis and autophagy: “Is it your turn or mine?”. Apoptosis 16:321–333

    PubMed  Google Scholar 

  • Giusti C, Luciani MF, Ravens S, Gillet A, Golstein P (2010) Autophagic cell death in dictyostelium requires the receptor histidine kinase DhkM. Mol Biol Cell 21:1825–1835

    PubMed Central  PubMed  CAS  Google Scholar 

  • Grzanka D, Grzanka A, Izdebska M, Gackowska L, Stepien A, Marszalek A (2010) Actin reorganization in CHO AA8 cells undergoing mitotic catastrophe and apoptosis induced by doxorubicin. Oncol Rep 23:655–663

    PubMed  CAS  Google Scholar 

  • Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ha HC, Snyder SH (1999) Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci U S A 96:13978–13982

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hamacher-Brady A, Brady NR, Gottlieb RA (2006) Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem 281:29776–29787

    PubMed  CAS  Google Scholar 

  • Han J, Zhong CQ, Zhang DW (2011a) Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat Immunol 12:1143–1149

    PubMed  CAS  Google Scholar 

  • Han W, Pan H, Chen Y, Sun J, Wang Y, Li J, Ge W, Feng L, Lin X, Wang X, Jin H (2011b) EGFR tyrosine kinase inhibitors activate autophagy as a cytoprotective response in human lung cancer cells. PLoS One 6:e18691

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785

    PubMed  CAS  Google Scholar 

  • Hariharan N, Zhai P, Sadoshima J (2011) Oxidative stress stimulates autophagic flux during ischemia/reperfusion. Antioxid Redox Signal 14:2179–2190

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ, Yuan J (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135:1311–1323

    PubMed Central  PubMed  CAS  Google Scholar 

  • Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489–495

    PubMed  CAS  Google Scholar 

  • Hou W, Han J, Lu C, Goldstein LA, Rabinowich H (2010) Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy 6:891–900

    PubMed Central  PubMed  CAS  Google Scholar 

  • Huang S, Sinicrope FA (2010) Celecoxib-induced apoptosis is enhanced by ABT-737 and by inhibition of autophagy in human colorectal cancer cells. Autophagy 6:256–269

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hwang JW, Chung S, Sundar IK, Yao H, Arunachalam G, McBurney MW, Rahman I (2010) Cigarette smoke-induced autophagy is regulated by SIRT1-PARP-1-dependent mechanism: implication in pathogenesis of COPD. Arch Biochem Biophys 500:203–209

    PubMed Central  PubMed  CAS  Google Scholar 

  • Iliodromitis EK, Lazou A, Kremastinos DT (2007) Ischemic preconditioning: protection against myocardial necrosis and apoptosis. Vasc Health Risk Manag 3:629–637

    PubMed Central  PubMed  CAS  Google Scholar 

  • Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590

    PubMed  CAS  Google Scholar 

  • Jagtap P, Szabo C (2005) Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov 4:421–440

    PubMed  CAS  Google Scholar 

  • Jiang M, Liu K, Luo J, Dong Z (2010) Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am J Pathol 176:1181–1192

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jin S, DiPaola RS, Mathew R, White E (2007) Metabolic catastrophe as a means to cancer cell death. J Cell Sci 120:379–383

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jin Y, Wang H, Cui X, Xu Z (2010) Role of autophagy in myocardial reperfusion injury. Front Biosci (Elite Ed) 2:1147–1153

    Google Scholar 

  • Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R, Caspary T, Mocarski ES (2011) RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471:368–372

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kang R, Livesey KM, Zeh HJ, Loze MT, Tang D (2010) HMGB1: a novel Beclin 1-binding protein active in autophagy. Autophagy 6:1209–1211

    PubMed  CAS  Google Scholar 

  • Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S, White E (2007) Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 21:1621–1635

    PubMed Central  PubMed  CAS  Google Scholar 

  • Khan MJ, Rizwan Alam M, Waldeck-Weiermair M, Karsten F, Groschner L, Riederer M, Hallstrom S, Rockenfeller P, Konya V, Heinemann A, Madeo F, Graier WF, Malli R (2012) Inhibition of autophagy rescues palmitic acid-induced necroptosis of endothelial cells. J Biol Chem 287:21110–21120

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141

    PubMed  PubMed Central  CAS  Google Scholar 

  • Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    PubMed Central  PubMed  CAS  Google Scholar 

  • Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, Bamber BA, Bassham DC, Bergamini E, Bi X, Biard-Piechaczyk M, Blum JS, Bredesen DE, Brodsky JL, Brumell JH, Brunk UT, Bursch W, Camougrand N, Cebollero E, Cecconi F, Chen Y, Chin LS, Choi A, Chu CT, Chung J, Clarke PG, Clark RS, Clarke SG, Clave C, Cleveland JL, Codogno P, Colombo MI, Coto-Montes A, Cregg JM, Cuervo AM, Debnath J, Demarchi F, Dennis PB, Dennis PA, Deretic V, Devenish RJ, Di Sano F, Dice JF, Difiglia M, Dinesh-Kumar S, Distelhorst CW, Djavaheri-Mergny M, Dorsey FC, Droge W, Dron M, Dunn WA Jr, Duszenko M, Eissa NT, Elazar Z, Esclatine A, Eskelinen EL, Fesus L, Finley KD, Fuentes JM, Fueyo J, Fujisaki K, Galliot B, Gao FB, Gewirtz DA, Gibson SB, Gohla A, Goldberg AL, Gonzalez R, Gonzalez-Estevez C, Gorski S, Gottlieb RA, Haussinger D, He YW, Heidenreich K, Hill JA, Hoyer-Hansen M, Hu X, Huang WP, Iwasaki A, Jaattela M, Jackson WT, Jiang X, Jin S, Johansen T, Jung JU, Kadowaki M, Kang C, Kelekar A, Kessel DH, Kiel JA, Kim HP, Kimchi A, Kinsella TJ, Kiselyov K, Kitamoto K, Knecht E et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151–175

    PubMed Central  PubMed  CAS  Google Scholar 

  • Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kosieradzki M, Rowinski W (2008) Ischemia/reperfusion injury in kidney transplantation: mechanisms and prevention. Transplant Proc 40:3279–3288

    PubMed  CAS  Google Scholar 

  • Kosta A, Roisin-Bouffay C, Luciani MF, Otto GP, Kessin RH, Golstein P (2004) Autophagy gene disruption reveals a non-vacuolar cell death pathway in Dictyostelium. J Biol Chem 279:48404–48409

    PubMed  CAS  Google Scholar 

  • Krishnakumar R, Kraus WL (2010) The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 39:8–24

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9:1004–1010

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036

    PubMed  CAS  Google Scholar 

  • Laskowski I, Pratschke J, Wilhelm MJ, Gasser M, Tilney NL (2000) Molecular and cellular events associated with ischemia/reperfusion injury. Ann Transplant 5:29–35

    PubMed  CAS  Google Scholar 

  • Lenardo MJ, McPhee CK, Yu L (2009) Autophagic cell death. Methods Enzymol 453:17–31

    PubMed Central  PubMed  CAS  Google Scholar 

  • Levine B, Sinha S, Kroemer G (2008) Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 4:600–606

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lord CJ, Ashworth A (2008) Targeted therapy for cancer using PARP inhibitors. Curr Opin Pharmacol 8:363–369

    PubMed  CAS  Google Scholar 

  • Luo S, Rubinsztein DC (2007) Atg5 and Bcl-2 provide novel insights into the interplay between apoptosis and autophagy. Cell Death Differ 14(7):1247–1250

    PubMed  CAS  Google Scholar 

  • Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    PubMed  CAS  Google Scholar 

  • Martin DS, Bertino JR, Koutcher JA (2000) ATP depletion + pyrimidine depletion can markedly enhance cancer therapy: fresh insight for a new approach. Cancer Res 60:6776–6783

    PubMed  CAS  Google Scholar 

  • Mathew R, Karantza-Wadsworth V, White E (2007a) Role of autophagy in cancer. Nat Rev Cancer 7:961–967

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K, Chen G, Jin S, White E (2007b) Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 21:1367–1381

    PubMed Central  PubMed  CAS  Google Scholar 

  • Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100:914–922

    PubMed  CAS  Google Scholar 

  • Mehrpour M, Esclatine A, Beau I, Codogno P (2010) Autophagy in health and disease. 1. Regulation and significance of autophagy: an overview. Am J Physiol Cell Physiol 298:C776–C785

    PubMed  CAS  Google Scholar 

  • Meijer AJ, Codogno P (2009) Autophagy: regulation and role in disease. Crit Rev Clin Lab Sci 46:210–240

    PubMed  CAS  Google Scholar 

  • Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873

    PubMed  CAS  Google Scholar 

  • Mizushima N (2009) Physiological functions of autophagy. Curr Top Microbiol Immunol 335:71–84

    PubMed  CAS  Google Scholar 

  • Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    PubMed  CAS  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    PubMed Central  PubMed  CAS  Google Scholar 

  • Munoz-Gamez JA, Rodriguez-Vargas JM, Quiles-Perez R, Aguilar-Quesada R, Martin-Oliva D, de Murcia G, Menissier de Murcia J, Almendros A, Ruiz de Almodovar M, Oliver FJ (2009) PARP-1 is involved in autophagy induced by DNA damage. Autophagy 5:61–74

    PubMed  CAS  Google Scholar 

  • Orsi A, Polson HE, Tooze SA (2010) Membrane trafficking events that partake in autophagy. Curr Opin Cell Biol 22:150–156

    PubMed  CAS  Google Scholar 

  • O’Sullivan-Coyne G, O’Sullivan GC, O’Donovan TR, Piwocka K, McKenna SL (2009) Curcumin induces apoptosis-independent death in oesophageal cancer cells. Br J Cancer 101:1585–1595

    PubMed Central  PubMed  Google Scholar 

  • Patel VA, Lee DJ, Longacre-Antoni A, Feng L, Lieberthal W, Rauch J, Ucker DS, Levine JS (2009) Apoptotic and necrotic cells as sentinels of local tissue stress and inflammation: response pathways initiated in nearby viable cells. Autoimmunity 42:317–321

    PubMed Central  PubMed  CAS  Google Scholar 

  • Portugal J, Mansilla S, Bataller M (2010) Mechanisms of drug-induced mitotic catastrophe in cancer cells. Curr Pharm Des 16:69–78

    PubMed  CAS  Google Scholar 

  • Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, Gilpin C, Levine B (2007) Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128:931–946

    PubMed  CAS  Google Scholar 

  • Raucci A, Palumbo R, Bianchi ME (2007) HMGB1: a signal of necrosis. Autoimmunity 40:285–289

    PubMed  CAS  Google Scholar 

  • Rosenfeldt MT, Ryan KM (2009) The role of autophagy in tumour development and cancer therapy. Expert Rev Mol Med 11:e36

    PubMed Central  PubMed  Google Scholar 

  • Rubinstein AD, Eisenstein M, Ber Y, Bialik S, Kimchi A (2011) The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol Cell 44:698–709

    PubMed  CAS  Google Scholar 

  • Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ (2007) Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6:304–312

    PubMed  CAS  Google Scholar 

  • Sadoshima J (2008) The role of autophagy during ischemia/reperfusion. Autophagy 4:402–403

    PubMed  Google Scholar 

  • Schweichel JU, Merker HJ (1973) The morphology of various types of cell death in prenatal tissues. Teratology 7:253–266

    PubMed  CAS  Google Scholar 

  • Shen HM, Codogno P (2011) Autophagic cell death: Loch Ness monster or endangered species? Autophagy 7

    Google Scholar 

  • Shen HM, Codogno P (2012) Autophagy is a survival force via suppression of necrotic cell death. Exp Cell Res 318:1304–1308

    PubMed  CAS  Google Scholar 

  • Shen S, Kepp O, Michaud M, Martins I, Minoux H, Metivier D, Maiuri MC, Kroemer RT, Kroemer G (2011) Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study. Oncogene 30:4544–4556

    PubMed  CAS  Google Scholar 

  • Shen S, Kepp O, Kroemer G (2012) The end of autophagic cell death? Autophagy 8

    Google Scholar 

  • Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, Tsujimoto Y (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6:1221–1228

    PubMed  CAS  Google Scholar 

  • Shimizu S, Konishi A, Nishida Y, Mizuta T, Nishina H, Yamamoto A, Tsujimoto Y (2010) Involvement of JNK in the regulation of autophagic cell death. Oncogene 29:2070–2082

    PubMed  CAS  Google Scholar 

  • Shingu T, Chumbalkar VC, Gwak HS, Fujiwara K, Kondo S, Farrell NP, Bogler O (2010) The polynuclear platinum BBR3610 induces G2/M arrest and autophagy early and apoptosis late in glioma cells. Neuro Oncol 12:1269–1277

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sims NR, Muyderman H (2010) Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta 1802:80–91

    PubMed  CAS  Google Scholar 

  • Sodeoka M, Dodo K (2010) Development of selective inhibitors of necrosis. Chem Rec 10:308–314

    PubMed  CAS  Google Scholar 

  • Speirs CK, Hwang M, Kim S, Li W, Chang S, Varki V, Mitchell L, Schleicher S, Lu B (2011) Harnessing the cell death pathway for targeted cancer treatment. Am J Cancer Res 1:43–61

    PubMed Central  PubMed  Google Scholar 

  • Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X, Wang X (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148:213–227

    PubMed  CAS  Google Scholar 

  • Tan SH, Shui G, Zhou J, Li JJ, Bay BH, Wenk MR, Shen HM (2012) Induction of autophagy by palmitic acid via protein kinase C-mediated signaling pathway independent of mTOR (mammalian target of rapamycin). J Biol Chem 287:14364–14376

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tang D, Kang R, Cheh CW, Livesey KM, Liang X, Schapiro NE, Benschop R, Sparvero LJ, Amoscato AA, Tracey KJ, Zeh HJ, Lotze MT (2010a) HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 29:5299–5310

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, Hoppe G, Bianchi ME, Tracey KJ, Zeh HJ 3rd, Lotze MT (2010b) Endogenous HMGB1 regulates autophagy. J Cell Biol 190:881–892

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tavernarakis N (2007) Cardiomyocyte necrosis: alternative mechanisms, effective interventions. Biochim Biophys Acta 1773:480–482

    PubMed  CAS  Google Scholar 

  • Thorburn J, Horita H, Redzic J, Hansen K, Frankel AE, Thorburn A (2009) Autophagy regulates selective HMGB1 release in tumor cells that are destined to die. Cell Death Differ 16:175–183

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tristan C, Shahani N, Sedlak TW, Sawa A (2011) The diverse functions of GAPDH: views from different subcellular compartments. Cell Signal 23:317–323

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vakifahmetoglu H, Olsson M, Zhivotovsky B (2008) Death through a tragedy: mitotic catastrophe. Cell Death Differ 15:1153–1162

    PubMed  CAS  Google Scholar 

  • van Wijk SJ, Hageman GJ (2005) Poly(ADP-ribose) polymerase-1 mediated caspase-independent cell death after ischemia/reperfusion. Free Radic Biol Med 39:81–90

    PubMed  Google Scholar 

  • Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W, Grooten J, Fiers W, Vandenabeele P (1998) Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 187:1477–1485

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vitale I, Galluzzi L, Castedo M, Kroemer G (2011) Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol 12:385–392

    PubMed  CAS  Google Scholar 

  • Wang Z, Jiang H, Chen S, Du F, Wang X (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148:228–243

    PubMed  CAS  Google Scholar 

  • White E, DiPaola RS (2009) The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 15:5308–5316

    PubMed Central  PubMed  Google Scholar 

  • White E, Karp C, Strohecker AM, Guo Y, Mathew R (2010) Role of autophagy in suppression of inflammation and cancer. Curr Opin Cell Biol 22:212–217

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wirawan E, Vande Walle L, Kersse K, Cornelis S, Claerhout S, Vanoverberghe I, Roelandt R, De Rycke R, Verspurten J, Declercq W, Agostinis P, Vanden Berghe T, Lippens S, Vandenabeele P (2010) Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis 1:e18

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wu YT, Tan HL, Huang Q, Kim YS, Pan N, Ong WY, Liu ZG, Ong CN, Shen HM (2008) Autophagy plays a protective role during zVAD-induced necrotic cell death. Autophagy 4:457–466

    PubMed  CAS  Google Scholar 

  • Wu YT, Tan HL, Huang Q, Ong CN, Shen HM (2009) Activation of the PI3K-Akt-mTOR signaling pathway promotes necrotic cell death via suppression of autophagy. Autophagy 5:824–834

    PubMed  CAS  Google Scholar 

  • Wu YT, Tan HL, Huang Q, Sun XJ, Zhu X, Ong CN, Shen HM (2011) zVAD-induced necroptosis in L929 cells depends on autocrine production of TNFα mediated via the PKC-MAPKs-AP-1 pathway. Cell Death Differ 18(1):26–37

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wu W, Liu P, Li J (2012) Necroptosis: an emerging form of programmed cell death. Crit Rev Oncol Hematol 82(3):249–258

    PubMed  Google Scholar 

  • Yang Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335:1–32

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22:124–131

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yang JC, Lu MC, Lee CL, Chen GY, Lin YY, Chang FR, Wu YC (2011) Selective targeting of breast cancer cells through ROS-mediated mechanisms potentiates the lethality of paclitaxel by a novel diterpene, gelomulide K. Free Radic Biol Med 51:641–657

    PubMed  CAS  Google Scholar 

  • Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon HU (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8:1124–1132

    PubMed  CAS  Google Scholar 

  • Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304:1500–1502

    PubMed  CAS  Google Scholar 

  • Zhang N, Qi Y, Wadham C, Wang L, Warren A, Di W, Xia P (2010) FTY720 induces necrotic cell death and autophagy in ovarian cancer cells: a protective role of autophagy. Autophagy 6:1157–1167

    PubMed  CAS  Google Scholar 

  • Zhang H, Zhou X, McQuade T, Li J, Chan FK, Zhang J (2011) Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471:373–376

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhao H (2007) The protective effect of ischemic postconditioning against ischemic injury: from the heart to the brain. J Neuroimmune Pharmacol 2:313–318

    PubMed  Google Scholar 

  • Zhou JN, Ng S, Huang Q, Li Z, Yao SQ, Shen HM (2013) AMPK mediates a pro-survival autophagy downstream of PARP-1 activation in response to DNA alkylating agents. FEBS Lett 587(2):170–177

    PubMed  CAS  Google Scholar 

  • Zong WX, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev 20:1–15

    PubMed  CAS  Google Scholar 

  • Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB (2004) Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 18:1272–1282

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Kaihui Lu for the contribution in preparing the manuscript and Youtong Wu for preparation of Fig. 13.1. Work in HMS’s laboratory is supported by research grants from Singapore National Medical Research Council (NMRC/1260/2010) and Singapore Biomedical Research Council (BMRC/08/1/21/19/554). Work in PC laboratory is supported by funding from INSERM and grants from ANR and INCa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Ming Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shen, HM., Codogno, P. (2014). Autophagy in Necrosis: A Force for Survival. In: Shen, HM., Vandenabeele, P. (eds) Necrotic Cell Death. Cell Death in Biology and Diseases. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8220-8_13

Download citation

Publish with us

Policies and ethics