Skip to main content

Thy-1 Modulates Neurological Cell–Cell and Cell–Matrix Interactions Through Multiple Molecular Interactions

  • Chapter
  • First Online:
Cell Adhesion Molecules

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 8))

Abstract

Thy-1, or CD90, is a glycosylphosphatidylinositol-linked cell surface glycoprotein expressed on multiple cell types, including neurons, thymocytes, fibroblasts, endothelial cells, mesangial cells, and some hematopoietic and stromal stem cells. Thy-1 is developmentally regulated and evolutionarily conserved. Its cellular effects vary between and in some cases within cell types, tissues, and species, indicating that its biological role is context dependent. However, it most often seems to affect cell–cell or cell–matrix interactions and cellular adhesion and migration. In the nervous system, Thy-1 mediates bidirectional cell–cell communication, which modulates cell–matrix adhesion. Neurons express high levels of Thy-1, which interacts with αvβ3 integrin present in astrocytes and stimulates increased astrocyte adhesion to the underlying surface (trans signaling) and in neurites, the same ligand–receptor association triggers neurite retraction and inhibition of axonal growth (cis signaling). Although Thy-1 lacks a cytoplasmic domain, it affects multiple intracellular signaling cascades through interaction with a number of molecules within lipid raft microdomains. Improved understanding of how this enigmatic adhesion molecule modulates signaling and cell phenotype may yield novel insights into neurodevelopment and nerve recovery after injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeysinghe HR, Cao Q, Xu J, Pollock S, Veyberman Y, Guckert NL, Keng P, Wang N (2003) THY1 expression is associated with tumor suppression of human ovarian cancer. Cancer Genet Cytogenet 143(2):125–132

    Article  CAS  PubMed  Google Scholar 

  • Almqvist P, Carlsson SR (1988) Characterization of a hydrophilic form of Thy-1 purified from human cerebrospinal fluid. J Biol Chem 263(25):12709–12715

    CAS  PubMed  Google Scholar 

  • Altieri DC, Plescia J, Plow EF (1993) The structural motif glycine 190-valine 202 of the fibrinogen γ chain interacts with CD11b/CD18 integrin (αMβ2, Mac-1) and promotes leukocyte adhesion. J Biol Chem 268:1847–1853

    CAS  PubMed  Google Scholar 

  • Arthur WT, Burridge K (2001) RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity. Mol Biol Cell 12:2711–2720

    Google Scholar 

  • Avalos AM, Labra CV, Quest AF, Leyton L (2002) Signaling triggered by Thy-1 interaction with beta 3 integrin on astrocytes is an essential step towards unraveling neuronal Thy-1 function. Biol Res 35(2):231–238

    Article  CAS  PubMed  Google Scholar 

  • Avalos AM, Arthur WT, Schneider P, Quest AF, Burridge K, Leyton L (2004) Aggregation of integrins and RhoA activation are required for Thy-1-induced morphological changes in astrocytes. J Biol Chem 279(37):39139–39145. doi:10.1074/jbc.M403439200

    Article  CAS  PubMed  Google Scholar 

  • Avalos AM, Valdivia AD, Munoz N, Herrera-Molina R, Tapia JC, Lavandero S, Chiong M, Burridge K, Schneider P, Quest AF, Leyton L (2009) Neuronal Thy-1 induces astrocyte adhesion by engaging syndecan-4 in a cooperative interaction with alphavbeta3 integrin that activates PKCalpha and RhoA. J Cell Sci 122(Pt 19):3462–3471. doi:10.1242/jcs.034827, jcs.034827 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barclay AN, Letarte-Muirhead M, Williams AF, Faulkes RA (1976) Chemical characterisation of the Thy-1 glycoproteins from the membranes of rat thymocytes and brain. Nature 263(5578): 563–567

    Article  CAS  PubMed  Google Scholar 

  • Barker TH, Hagood JS (2009a) Getting a grip on Thy-1 signaling. Biochim Biophys Acta 1793(5):921–923. doi:10.1016/j.bbamcr.2008.10.004, S0167-4889(08)00349-2 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker TH, Hagood JS (2009b) Getting a grip on Thy-1 signaling. Biochim Biophys Acta 1793(5):921–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker TH, Grenett HE, MacEwen MW, Tilden SG, Fuller GM, Settleman J, Woods A, Murphy-Ullrich J, Hagood JS (2004a) Thy-1 regulates fibroblast focal adhesions, cytoskeletal organization and migration through modulation of p190 RhoGAP and Rho GTPase activity. Exp Cell Res 295(2):488–496

    Article  CAS  PubMed  Google Scholar 

  • Barker TH, Pallero MA, MacEwen MW, Tilden SG, Woods A, Murphy-Ullrich JE, Hagood JS (2004b) Thrombospondin-1-induced focal adhesion disassembly in fibroblasts requires Thy-1 surface expression, lipid raft integrity, and Src activation. J Biol Chem 279(22):23510–23516

    Article  CAS  PubMed  Google Scholar 

  • Beech JN, Morris RJ, Raisman G (1983) Density of Thy-1 on axonal membrane of different rat nerves. J Neurochem 41(2):411–417

    Article  CAS  PubMed  Google Scholar 

  • Beissert S, He HT, Hueber AO, Lellouch AC, Metze D, Mehling A, Luger TA, Schwarz T, Grabbe S (1998) Impaired cutaneous immune responses in Thy-1-deficient mice. J Immunol 161(10): 5296–5302

    CAS  PubMed  Google Scholar 

  • Benarroch EE (2005) Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc 80(10):1326–1338. doi:10.4065/80.10.1326

    Article  CAS  PubMed  Google Scholar 

  • Bergman AS, Carlsson SR (1994) Saponin-induced release of cell-surface-anchored Thy-1 by serum glycosylphosphatidylinositol-specific phospholipase D. Biochem J 298(Pt 3):661–668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley JE, Ramirez G, Hagood JS (2009) Roles and regulation of Thy-1, a context-dependent modulator of cell phenotype. Biofactors 35(3):258–265. doi:10.1002/biof.41

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw JM (2010) The Src, Syk, and Tec family kinases: distinct types of molecular switches. Cell Signal 22(8):1175–1184. doi:10.1016/j.cellsig.2010.03.001

    Article  CAS  PubMed  Google Scholar 

  • Bukovsky A, Caudle MR, Keenan JA, Upadhyaya NB, Van Meter SE, Wimalasena J, Elder RF (2001) Association of mesenchymal cells and immunoglobulins with differentiating epithelial cells. BMC Dev Biol 1:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burridge K, Chrzanowska-Wodnicka M (1996) Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 12:463–518. doi:10.1146/annurev.cellbio.12.1.463

    Article  CAS  PubMed  Google Scholar 

  • Campsall KD, Mazerolle CJ, De Repentingy Y, Kothary R, Wallace VA (2002) Characterization of transgene expression and Cre recombinase activity in a panel of Thy-1 promoter-Cre transgenic mice. Dev Dyn 224(2):135–143

    Article  CAS  PubMed  Google Scholar 

  • Cao Q, Abeysinghe H, Chow O, Xu J, Kaung H, Fong C, Keng P, Insel RA, Lee WM, Barrett JC, Wang N (2001) Suppression of tumorigenicity in human ovarian carcinoma cell line SKOV-3 by microcell-mediated transfer of chromosome 11. Cancer Genet Cytogenet 129(2):131–137

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Shi-Wen X, van Beek J, Kennedy L, McLeod M, Renzoni EA, Bou-Gharios G, Wilcox-Adelman S, Goetinck PF, Eastwood M, Black CM, Abraham DJ, Leask A (2005) Matrix contraction by dermal fibroblasts requires transforming growth factor-beta/activin-linked kinase 5, heparan sulfate-containing proteoglycans, and MEK/ERK: insights into pathological scarring in chronic fibrotic disease. Am J Pathol 167(6):1699–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Thelin WR, Yang B, Milgram SL, Jacobson K (2006) Transient anchorage of cross-linked glycosyl-phosphatidylinositol-anchored proteins depends on cholesterol, Src family kinases, caveolin, and phosphoinositides. J Cell Biol 175(1):169–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CH, Chen YJ, Jeng CJ, Yang SH, Tung PY, Wang SM (2007) Role of PKA in the anti-Thy-1 antibody-induced neurite outgrowth of dorsal root ganglionic neurons. J Cell Biochem 101:566–575

    Google Scholar 

  • Chen X, Jen A, Warley A, Lawrence MJ, Quinn PJ, Morris RJ (2009a) Isolation at physiological temperature of detergent-resistant membranes with properties expected of lipid rafts: the influence of buffer composition. Biochem J 417(2):525–533. doi:10.1042/BJ20081385, BJ20081385 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Veracini L, Benistant C, Jacobson K (2009b) The transmembrane protein CBP plays a role in transiently anchoring small clusters of Thy-1, a GPI-anchored protein, to the cytoskeleton. J Cell Sci 122(21):3966–3972. doi:10.1242/jcs.049346, jcs.049346 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J, Leyton L, Nham SU (2005) Characterization of alphaX I-domain binding to Thy-1. Biochem Biophys Res Commun 331(2):557–561

    Article  CAS  PubMed  Google Scholar 

  • Couchman JR, Woods A (1999) Syndecan-4 and integrins: combinatorial signaling in cell adhesion. J Cell Sci 112(Pt 20):3415–3420

    CAS  PubMed  Google Scholar 

  • Deininger SO, Rajendran L, Lottspeich F, Przybylski M, Illges H, Stuermer CA, Reuter A (2003) Identification of teleost Thy-1 and association with the microdomain/lipid raft reggie proteins in regenerating CNS axons. Mol Cell Neurosci 22(4):544–554

    Article  CAS  PubMed  Google Scholar 

  • Doherty P, Singh A, Rimon G, Bolsover SR, Walsh FS (1993) Thy-1 antibody-triggered neurite outgrowth requires an influx of calcium into neurons via N- and L-type calcium channels. J Cell Biol 122(1):181–189

    Article  CAS  PubMed  Google Scholar 

  • Dovas A, Yoneda A, Couchman JR (2006) PKCbeta-dependent activation of RhoA by syndecan-4 during focal adhesion formation. J Cell Sci 119(Pt 13):2837–2846. doi:10.1242/jcs.03020

    Article  CAS  PubMed  Google Scholar 

  • Dubash AD, Menold MM, Samson T, Boulter E, Garcia-Mata R, Doughman R, Burridge K (2009) Chapter 1. Focal adhesions: new angles on an old structure. Int Rev Cell Mol Biol 277:1–65. doi:10.1016/S1937-6448(09)77001-7

    Article  CAS  PubMed  Google Scholar 

  • Durrheim GA, Garnett D, Dennehy KM, Beyers AD (2001) Thy-1 associated Pp85-90 is a potential docking site for Sh2 domain-containing signal transduction molecules. Cell Biol Int 25(1):33–42

    Article  CAS  PubMed  Google Scholar 

  • Erb L, Liu J, Ockerhausen J, Kong Q, Garrad RC, Griffin K, Neal C, Krugh B, Santiago-Perez LI, Gonzalez FA, Gresham HD, Turner JT, Weisman GA (2001) An RGD sequence in the P2Y(2) receptor interacts with alpha(V)beta(3) integrins and is required for G(o)-mediated signal transduction. J Cell Biol 153(3):491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fellin T, Carmignoto G (2004) Neurone-to-astrocyte signalling in the brain represents a distinct multifunctional unit. J Physiol 559(Pt 1):3–15. doi:10.1113/jphysiol.2004.063214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng SH, Wang AC (1988) Expression of Thy-1 and effect of phosphatidylinositol-specific phospholipase C on primate and murine cell lines. Cell Immunol 112(2):315–328

    Article  CAS  PubMed  Google Scholar 

  • Fiegel HC, Kaifi JT, Quaas A, Varol E, Krickhahn A, Metzger R, Sauter G, Till H, Izbicki JR, Erttmann R, Kluth D (2008) Lack of Thy1 (CD90) expression in neuroblastomas is correlated with impaired survival. Pediatr Surg Int 24(1):101–105

    Article  PubMed  Google Scholar 

  • Giguere V, Isobe K, Grosveld F (1985) Structure of the murine Thy-1 gene. EMBO J 4(8): 2017–2024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haeryfar SM, Hoskin DW (2004) Thy-1: more than a mouse pan-T cell marker. J Immunol 173(6):3581–3588

    CAS  PubMed  Google Scholar 

  • Hansson E, Ronnback L (2003) Glial neuronal signaling in the central nervous system. FASEB J 17(3):341–348. doi:10.1096/fj.02-0429rev

    Article  CAS  PubMed  Google Scholar 

  • Henke RC, Seeto GS, Jeffrey PL (1997) Thy-1 and AvGp50 signal transduction complex in the avian nervous system: c-Fyn and G alpha i protein association and activation of signalling pathways. J Neurosci Res 49(6):655–670

    Article  CAS  PubMed  Google Scholar 

  • Henriquez M, Herrera-Molina R, Valdivia A, Alvarez A, Kong M, Munoz N, Eisner V, Jaimovich E, Schneider P, Quest AF, Leyton L (2011) ATP release due to Thy-1-integrin binding induces P2X7-mediated calcium entry required for focal adhesion formation. J Cell Sci 124(Pt 9): 1581–1588. doi:10.1242/jcs.073171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermosilla T, Munoz D, Herrera-Molina R, Valdivia A, Munoz N, Nham SU, Schneider P, Burridge K, Quest AF, Leyton L (2008) Direct Thy-1/alphaVbeta3 integrin interaction mediates neuron to astrocyte communication. Biochim Biophys Acta 1783(6):1111–1120. doi:10.1016/j.bbamcr.2008.01.034, S0167-4889(08)00053-0 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera-Molina R, Frischknecht R, Maldonado H, Seidenbecher CI, Gundelfinger ED, Hetz C, Aylwin Mde L, Schneider P, Quest AF, Leyton L (2012) Astrocytic alphaVbeta3 integrin inhibits neurite outgrowth and promotes retraction of neuronal processes by clustering Thy-1. PLoS One 7(3):e34295. doi:10.1371/journal.pone.0034295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoessli D, Bron C, Pink JR (1980) T-lymphocyte differentiation is accompanied by increase in sialic acid content of Thy-1 antigen. Nature 283(5747):576–578

    Article  CAS  PubMed  Google Scholar 

  • Kemshead JT, Ritter MA, Cotmore SF, Greaves MF (1982) Human Thy-1: expression on the cell surface of neuronal and glial cells. Brain Res 236(2):451–461

    Article  CAS  PubMed  Google Scholar 

  • Khoo TK, Coenen MJ, Schiefer AR, Kumar S, Bahn RS (2008) Evidence for enhanced Thy-1 (CD90) expression in orbital fibroblasts of patients with Graves’ ophthalmopathy. Thyroid 18:1291–1296

    Google Scholar 

  • Koumas L, Smith TJ, Feldon S, Blumberg N, Phipps RP (2003) Thy-1 expression in human fibroblast subsets defines myofibroblastic or lipofibroblastic phenotypes. Am J Pathol 163(4): 1291–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kukulansky T, Abramovitch S, Hollander N (1999) Cleavage of the glycosylphosphatidylinositol anchor affects the reactivity of thy-1 with antibodies. J Immunol 162(10):5993–5997

    CAS  PubMed  Google Scholar 

  • Kuroiwa K, Torikai Y, Osawa M, Nakashima T, Nakashima M, Endo H, Arai T (2012) Epitope determination of anti rat thy-1 monoclonal antibody that regulates neurite outgrowth. Hybridoma (Larchmt) 31(4):225–232. doi:10.1089/hyb.2012.0002

    Article  CAS  Google Scholar 

  • Kusumi A, Koyama-Honda I, Suzuki K (2004) Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 5(4):213–230. doi:10.1111/j.1600-0854.2004.0178.x

    Article  CAS  PubMed  Google Scholar 

  • Lawson C, Schlaepfer DD (2012) Integrin adhesions: who’s on first? What’s on second?: connections between FAK and talin. Cell Adh Migr 6(4):302–306. doi:10.4161/cam.20488

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehmann GM, Woeller CF, Pollock SJ, O’Loughlin CW, Gupta S, Feldon SE, Phipps RP (2010) Novel anti-adipogenic activity produced by human fibroblasts. Am J Physiol Cell Physiol. 299(3):C672–C681. doi:10.1152/ajpcell.00451.2009. Epub 2010 Jun 16

    Google Scholar 

  • Leyton L, Quest AF, Bron C (1999) Thy-1/CD3 coengagement promotes TCR signaling and enhances particularly tyrosine phosphorylation of the raft molecule LAT. Mol Immunol 36(11–12):755–768

    Article  CAS  PubMed  Google Scholar 

  • Leyton L, Schneider P, Labra CV, Ruegg C, Hetz CA, Quest AF, Bron C (2001) Thy-1 binds to integrin beta(3) on astrocytes and triggers formation of focal contact sites. Curr Biol 11(13): 1028–1038

    Article  CAS  PubMed  Google Scholar 

  • Lung HL, Bangarusamy DK, Xie D, Cheung AK, Cheng Y, Kumaran MK, Miller L, Liu ET, Guan XY, Sham JS, Fang Y, Li L, Wang N, Protopopov AI, Zabarovsky ER, Tsao SW, Stanbridge EJ, Lung ML (2005) THY1 is a candidate tumour suppressor gene with decreased expression in metastatic nasopharyngeal carcinoma. Oncogene 24(43):6525–6532

    CAS  PubMed  Google Scholar 

  • Mahanthappa NK, Patterson PH (1992) Thy-1 multimerization is correlated with neurite outgrowth. Dev Biol 150(1):60–71

    Article  CAS  PubMed  Google Scholar 

  • Mayeux-Portas V, File SE, Stewart CL, Morris RJ (2000) Mice lacking the cell adhesion molecule Thy-1 fail to use socially transmitted cues to direct their choice of food. Curr Biol 10(2):68–75

    Article  CAS  PubMed  Google Scholar 

  • McKenzie JL, Fabre JW (1981) Distribution of Thy-1 in human brain: immunofluorescence and absorption analyses with a monoclonal antibody. Brain Res 230(1–2):307–316

    Article  CAS  PubMed  Google Scholar 

  • Minto AW, Erwig LP, Rees AJ (2003) Heterogeneity of macrophage activation in anti-Thy-1.1 nephritis. Am J Pathol 163(5):2033–2041

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris R (1985) Thy-1 in developing nervous tissue. Dev Neurosci 7(3):133–160

    Article  CAS  PubMed  Google Scholar 

  • Naquet P, Barbet J, Pont S, Marchetto S, Barad M, Devaux C, Rougon G, Pierres M (1989) Characterization of Thy-1 with monoclonal antibodies and evidence of Thy-3. Immunol Ser 45:99–117

    CAS  PubMed  Google Scholar 

  • Neumann-Giesen C, Falkenbach B, Beicht P, Claasen S, Luers G, Stuermer CA, Herzog V, Tikkanen R (2004) Membrane and raft association of reggie-1/flotillin-2: role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression. Biochem J 378(Pt 2):509–518. doi:10.1042/BJ20031100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nosten-Bertrand M, Errington ML, Murphy KP, Tokugawa Y, Barboni E, Kozlova E, Michalovich D, Morris RG, Silver J, Stewart CL, Bliss TV, Morris RJ (1996) Normal spatial learning despite regional inhibition of LTP in mice lacking Thy-1. Nature 379(6568):826–829

    Article  CAS  PubMed  Google Scholar 

  • Partida GJ, Stradleigh TW, Ogata G, Godzdanker I, Ishida AT (2012) Thy1 associates with the cation channel subunit HCN4 in adult rat retina. Invest Ophthalmol Vis Sci 53(3):1696–1703. doi:10.1167/iovs.11-9307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perea G, Araque A (2002) Communication between astrocytes and neurons: a complex language. J Physiol Paris 96(3–4):199–207

    Article  PubMed  Google Scholar 

  • Rege TA, Hagood JS (2006a) Thy-1, a versatile modulator of signaling affecting cellular adhesion, proliferation, survival, and cytokine/growth factor responses. Biochim Biophys Acta 1763(10): 991–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rege TA, Hagood JS (2006b) Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis. FASEB J 20(8):1045–1054

    Article  CAS  PubMed  Google Scholar 

  • Rege TA, Pallero MA, Gomez C, Grenett HE, Murphy-Ullrich JE, Hagood JS (2006) Thy-1, via its GPI anchor, modulates Src family kinase and focal adhesion kinase phosphorylation and subcellular localization, and fibroblast migration, in response to thrombospondin-1/hep I. Exp Cell Res 312(19):3752–3767

    Article  CAS  PubMed  Google Scholar 

  • Reif AE, Allen JM (1964) The Akr thymic antigen and its distribution in leukemias and nervous tissues. J Exp Med 120:413–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saalbach A, Wetzig T, Haustein UF, Anderegg U (1999) Detection of human soluble Thy-1 in serum by ELISA. Fibroblasts and activated endothelial cells are a possible source of soluble Thy-1 in serum. Cell Tissue Res 298(2):307–315

    Article  CAS  PubMed  Google Scholar 

  • Saalbach A, Haustein UF, Anderegg U (2000) A ligand of human thy-1 is localized on polymorphonuclear leukocytes and monocytes and mediates the binding to activated thy-1-positive microvascular endothelial cells and fibroblasts. J Invest Dermatol 115(5):882–888

    Article  CAS  PubMed  Google Scholar 

  • Saalbach A, Hildebrandt G, Haustein UF, Anderegg U (2002) The Thy-1/Thy-1 ligand interaction is involved in binding of melanoma cells to activated Thy-1- positive microvascular endothelial cells. Microvasc Res 64(1):86–93

    Article  CAS  PubMed  Google Scholar 

  • Saalbach A, Wetzel A, Haustein UF, Sticherling M, Simon JC, Anderegg U (2005) Interaction of human Thy-1 (CD 90) with the integrin alphavbeta3 (CD51/CD61): an important mechanism mediating melanoma cell adhesion to activated endothelium. Oncogene 24(29):4710–4720

    Article  CAS  PubMed  Google Scholar 

  • Saleh M, Bartlett PF (1989) Evidence from neuronal heterokaryons for a trans-acting factor suppressing Thy-1 expression during neuronal development. J Neurosci Res 23(4):406–415. doi:10.1002/jnr.490230406

    Article  CAS  PubMed  Google Scholar 

  • Sanders YY, Kumbla P, Hagood JS (2007) Enhanced myofibroblastic differentiation and survival in Thy-1(-) lung fibroblasts. Am J Respir Cell Mol Biol 36(2):226–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders YY, Pardo A, Selman M, Nuovo GJ, Tollefsbol TO, Siegal GP, Hagood JS (2008) Thy-1 promoter hypermethylation: a novel epigenetic pathogenic mechanism in pulmonary fibrosis. Am J Respir Cell Mol Biol 39(5):610–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders YY, Tollefsbol TO, Varisco BM, Hagood JS (2011) Epigenetic regulation of thy-1 by histone deacetylase inhibitor in rat lung fibroblasts. Am J Respir Cell Mol Biol 45(1):16–23. doi:10.1165/rcmb.2010-0154OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlamp CL, Johnson EC, Li Y, Morrison JC, Nickells RW (2001) Changes in Thy1 gene expression associated with damaged retinal ganglion cells. Mol Vis 7:192–201

    CAS  PubMed  Google Scholar 

  • Schlesinger M, Yron I (1969) Antigenic changes in lymph-node cells after administration of antiserum to thymus cells. Science 164(886):1412–1413

    Article  CAS  PubMed  Google Scholar 

  • Seki T, Spurr N, Obata F, Goyert S, Goodfellow P, Silver J (1985) The human Thy-1 gene: structure and chromosomal location. Proc Natl Acad Sci USA 82(19):6657–6661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenoy-Scaria AM, Gauen LK, Kwong J, Shaw AS, Lublin DM (1993) Palmitylation of an amino-terminal cysteine motif of protein tyrosine kinases p56lck and p59fyn mediates interaction with glycosyl-phosphatidylinositol-anchored proteins. Mol Cell Biol 13(10):6385–6392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spanopoulou E, Giguere V, Grosveld F (1988) Transcriptional unit of the murine Thy-1 gene: different distribution of transcription initiation sites in brain. Mol Cell Biol 8(9):3847–3856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spanopoulou E, Giguere V, Grosveld F (1991) The functional domains of the murine Thy-1 gene promoter. Mol Cell Biol 11(4):2216–2228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tiveron M-C, Barboni E, Rivero FBP, Gormley AM, Seeley PJ, Grosveld F, Morris R (1992) Selective inhibition of neurite outgrowth on mature astrocytes by Thy-1 glycoprotein. Nature 355:745–748

    Article  CAS  PubMed  Google Scholar 

  • Tiveron MC, Nosten-Bertrand M, Jani H, Garnett D, Hirst EM, Grosveld F, Morris RJ (1994) The mode of anchorage to the cell surface determines both the function and the membrane location of Thy-1 glycoprotein. J Cell Sci 107(Pt 7):1783–1796

    CAS  PubMed  Google Scholar 

  • Tokugawa Y, Koyama M, Silver J (1997) A molecular basis for species differences in Thy-1 expression patterns. Mol Immunol 34(18):1263–1272

    Article  CAS  PubMed  Google Scholar 

  • Varisco BM, Ambalavanan N, Whitsett JA, Hagood JS (2012) Thy-1 signals through PPARgamma to promote lipofibroblast differentiation in the developing lung. Am J Respir Cell Mol Biol 46(6):765–772. doi:10.1165/rcmb.2011-0316OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal M, Morris R, Grosveld F, Spanopoulou E (1990) Tissue-specific control elements of the Thy-1 gene. EMBO J 9(3):833–840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6(8):626–640. doi:10.1038/nrn1722

    Article  CAS  PubMed  Google Scholar 

  • Vossmeyer D, Hofmann W, Loster K, Reutter W, Danker K (2002) Phospholipase Cgamma binds alpha1beta1 integrin and modulates alpha1beta1 integrin-specific adhesion. J Biol Chem 277(7):4636–4643. doi:10.1074/jbc.M105415200

    Article  CAS  PubMed  Google Scholar 

  • Wandel E, Saalbach A, Sittig D, Gebhardt C, Aust G (2012) Thy-1 (CD90) is an interacting partner for CD97 on activated endothelial cells. J Immunol 188(3):1442–1450. doi:10.4049/jimmunol.1003944

    Article  CAS  PubMed  Google Scholar 

  • Wetzel A, Chavakis T, Preissner KT, Sticherling M, Haustein UF, Anderegg U, Saalbach A (2004) Human Thy-1 (CD90) on activated endothelial cells is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Immunol 172(6):3850–3859

    CAS  PubMed  Google Scholar 

  • Williams AF, Gagnon J (1982) Neuronal cell Thy-1 glycoprotein: homology with immunoglobulin. Science 216(4547):696–703

    Article  CAS  PubMed  Google Scholar 

  • Xue GP, Morris R (1992) Expression of the neuronal surface glycoprotein Thy-1 does not follow appearance of its mRNA in developing mouse Purkinje cells. J Neurochem 58(2):430–440

    Article  CAS  PubMed  Google Scholar 

  • Xue GP, Calvert RA, Morris RJ (1990) Expression of the neuronal surface glycoprotein Thy-1 is under post-transcriptional control, and is spatially regulated, in the developing olfactory system. Development 109(4):851–864

    CAS  PubMed  Google Scholar 

  • Yang SH, Chen YJ, Tung PY, Lai WL, Chen Y, Jeng CJ, Wang SM (2008) Anti-Thy-1 antibody-induced neurite outgrowth in cultured dorsal root ganglionic neurons is mediated by the c-Src-MEK signaling pathway. J Cell Biochem 103:67–77

    Google Scholar 

  • Zamir E, Geiger B (2001) Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci 114(Pt 20):3583–3590

    CAS  PubMed  Google Scholar 

  • Zhang F, Crise B, Su B, Hou Y, Rose JK, Bothwell A, Jacobson K (1991) Lateral diffusion of membrane-spanning and glycosylphosphatidylinositol-linked proteins: toward establishing rules governing the lateral mobility of membrane proteins. J Cell Biol 115(1):75–84

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Hagood JS, Lu B, Merryman WD, Murphy-Ullrich JE (2010) Thy-1-integrin alphavbeta5 interactions inhibit lung fibroblast contraction-induced latent TGF-beta1 activation and myofibroblast differentiation. J Biol Chem 285(29):22382–22393. doi:10.1074/jbc.M110.126227, M110.126227 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

LL is supported by FONDECYT 1110149; Fogarty International Center, National Institutes of Health (NIH), Award Number 5R03TW007810; Iniciativas Científicas Milenio: Biomedical Neuroscience Institute P09-015-F; and Proyecto Anillo ACT 1111. JH is supported by NIH Awards HL082818 and HL111169.

Compliance with Ethics Requirements

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James S. Hagood M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leyton, L., Hagood, J.S. (2014). Thy-1 Modulates Neurological Cell–Cell and Cell–Matrix Interactions Through Multiple Molecular Interactions. In: Berezin, V., Walmod, P. (eds) Cell Adhesion Molecules. Advances in Neurobiology, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8090-7_1

Download citation

Publish with us

Policies and ethics