Skip to main content

Allele Discovery Platform (ADP) in Papaya (Carica papaya L.)

  • Chapter
  • First Online:
Genetics and Genomics of Papaya

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 10))

  • 1995 Accesses

Abstract

Papaya (Carica papaya L.) is a soft-wooded herbaceous dicotyledonous plant that belongs to the family Caricaceae. Papaya ranks first among fruits consumed and also ranks first in nutritional profile. Besides its nutritional and medicinal properties, papaya has a number of characteristics that contribute to its being used as an experimental model for tree crops. Papaya is among the limited number of plant species that are trioecious with three sex forms—female, male, and hermaphrodite—making it an excellent model for basic studies on sex determination. In recent times, papaya has tremendously benefited from genomics and especially transgenic technology. However, resistance to transgenic technology has pushed scientists to look for non-transgenic methods for its improvement. TILLING (targeting induced local lesion in genome)/ADP (allele discovery platform) is an alternative non-transgenic tool for creating variability in crop species. In this chapter, we will present data to demonstrate that TILLING can be used successfully for papaya breeding and basic functional genomics studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bari L, Hassan P, Absar N, Haque ME, Khuda M, Perrvin MM (2006) Nutritional analysis of two local varieties of papaya (Carica papaya L.) at different maturation stages. Pakistan J Biol Sci 9

    Google Scholar 

  • Bhargava KS, Khurana SMP (1970) Insect transmission of papaya virus with special reference to papaya mosaic virus. Zbl Bekt 124:688–696

    CAS  Google Scholar 

  • Blas AL, Ming R, Liu Z, Veatch OJ, Paull RE, Moore PH, Yu Q (2010) Cloning of the papaya chromoplast-specific lycopene β-cyclas, CpCYC-b, controlling fruit flesh color reveals conserved microsynteny and a recombination hot spot. Plant Physiol 152:2013–2022

    Article  PubMed  CAS  Google Scholar 

  • Borai FE, Duncan LW (2005) Nematode parasites of subtropical and tropical fruit tree crops. In: Luc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture, 2nd edn. CAB International, Oxfordshire, pp 467–492

    Chapter  Google Scholar 

  • Bremerk K, Chase MW, Stevens PF (1998) An ordinal classification for the families of flowering plants. Ann Mo Bot Gard 85:531–553

    Article  Google Scholar 

  • Brotman Y, Silberstein L, Kovalski L, Perin C, Dogiment C, Pilrat M, Klingler L, Thompson A, Perl-Treves R (2002) Resistance gene homologues in melon are linked to genetic loci conferring disease and pest resistance. TAG 104:1055–1063

    Article  PubMed  CAS  Google Scholar 

  • Caranta C, Ruffel S, Bendahmane A, Palloix A, Robaglia C (2003) Mutations in the eIF4E gene and resistance against Potyvirus. Patent GENOPLANTE VALOR WO 03/066900

    Google Scholar 

  • Caranta C, Ruffel S, Palloix A, Fabre N (2004) Combination of mutation in both eIF4E et eIF(iso)4E for resistance against Potyvirus. Patent GENOPLANTE VALOR FR 04/05616

    Google Scholar 

  • Cecilia KB, Roslyn MG, Natalie O’D, Peter N, Kenneth J, Tomas L, Carl EO, Peter S, John DH, Birger LM, Alan DN (2012) A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production. Plant Biotechnol J 10:54–66

    Article  Google Scholar 

  • Chang SS, Hu NH, Chen CC, Chu TF (1983) Diagnosis criteria of boron deficiency in papaya and the soil boron status of Taitung area (Taiwan). J Agric Res China 32:238–252

    CAS  Google Scholar 

  • Chen Y, Wilde D (2011) Mutation scanning of peach floral genes. BMC Plant Biol 11:96

    Article  PubMed  CAS  Google Scholar 

  • Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S (2001) High throughput screening for induced point mutations. Plant Physiol 126:480–484

    Article  PubMed  CAS  Google Scholar 

  • Cross MJ, Waters DLE, Lee LS, Henry RJ (2008) Endonucleolytic mutation analysis by internal labeling (EMAIL). Electrophoresis 29:1291–1301

    Article  PubMed  CAS  Google Scholar 

  • Csorba T, Pantaleow V, Burgyan J (2009) RNA silencing: an antiviral mechanism. Adv Virus Res 75:35–72

    Article  PubMed  CAS  Google Scholar 

  • Dahmani-Mardas F, Troadec C, Boualem A, LĂ©vĂŞque S, Alsadon AA, Aldoss AA, Dogimont C, Bendahmane A (2010) Engineering melon plants with improved fruit shelf life using the TILLING approach. PLoS One 5(12):e15776

    Article  PubMed  CAS  Google Scholar 

  • De Clerck LS, Ebo DG, Bridts CH, Stevens WJ (2003) Angio-edema and oral allergy syndrome due to the consumption of Carica Papaya. J Allergy Clin Immunol 111:S103

    Article  Google Scholar 

  • Devitt LC, Sawbridge T, Holton TA, Mitchelson K, Dietzen R (2006) Discovery of genes associated with fruit ripening in Carica papaya using expressed sequence tags. Plant Sci 170:356–363

    Article  CAS  Google Scholar 

  • Dudhe MY, Chikkappa GK (2010) Plant sciences. New Vishal Publications, Delhi, p 96

    Google Scholar 

  • Fadhil W, Ibrahem S, Seth R, Ilyas M (2010) Quick-multiplex-consensus (QMC)-PCR followed by high-resolution melting: a simple and robust method for mutation detection in formalin-fixed paraffin-embedded tissue. J Clin Pathol 63:134–140

    Article  PubMed  CAS  Google Scholar 

  • Fermin GA, Castro LT, Tennant PF (2010) CP-transgenic and non-transgenic approaches for the control of papaya ringspot: current situation and challenges. Transgenic Plant J 10:1–15

    Google Scholar 

  • Gangopadhyay G, Roy SK, Ghose K, Poddar R, Bandyopadhyay T, Basu D, Mukherjee KK (2007) Sex detection of Carica papaya and Cycas circinalis in pre-flowering stage by ISSR and RAPD. Curr Sci 92:524–526

    CAS  Google Scholar 

  • Gao ZH, Johansen E, Eyers S, Thomas CL, Noel Ellis TH, Maule AJ (2006) The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J 40:376–385

    Article  Google Scholar 

  • Gilchrist E, Haughn G (2010) Reverse genetics techniques: engineering loss and gain of gene function in plants. Brief Funct Genomics 9:103–110

    Article  PubMed  CAS  Google Scholar 

  • Glowacki S, Macioszek VK, Kenonowicz AK (2011) R proteins as fundamentals of plant innate immunity. Cell Mol Biol Lett 16:1–24

    Article  PubMed  CAS  Google Scholar 

  • Gonsalves D (1998) Control of papaya ringspot virus in papaya: a case study. Annu Rev Phytopathol 36:415–437

    Article  PubMed  CAS  Google Scholar 

  • Gschwend AR, Yu Q, Tong EJ, Zeng F, Han J, VanBuren R, Aryal R, Charlesworth D, Moore PH, Paterson AH, Ming R (2012) Rapid divergence and expansion of the X chromosome in papaya. Proc Natl Acad Sci USA 109:13716–13721

    Article  PubMed  CAS  Google Scholar 

  • Hofmeyr JDJ (1939) Some genetic breeding aspects of Carica papaya L. Agron Trop 17:345–351

    Google Scholar 

  • Horovitz S, Jimenez H (1967) Cruzamientos interespecificas and intergenerius on cariceas ysus implicaciones fitotechicas. Agron Trop 17:323–343

    Google Scholar 

  • Hui YH, Cano MP, Gusek T, Sidhu JS, Sinha NK (2006) Handbook of fruits and fruit processing. Blackwell, Oxford

    Book  Google Scholar 

  • Ibrahem S, Seth R, O’Sullivan B, Fadhil W, Taniere P, Ilyas M (2010) Comparative analysis of pyrosequencing and QMC-PCR in conjunction with high resolution melting for KRAS/BRAF mutation detection. Int J Exp Pathol 91:500–505

    Article  PubMed  CAS  Google Scholar 

  • Jahn MM, Kang GC (2003) Recessive plant viral resistance results from mutations in translation initiation factor eif4e. Patent WO 04/057941

    Google Scholar 

  • Kang BC, Yeam I, Frantz JD, Murphy JF, Jahn MM (2005) The pvr1 locus in Capsicum encodes a translation initiation factor eIF4E that interacts with Tobacco etch virus VPg. Plant J 42:392–405

    Article  PubMed  CAS  Google Scholar 

  • Krishna KL, Paridhavi M, Patel JA (2008) Review on nutritional, medicinal and pharmacological properties of papaya (Carica papaya L.). Nat Prod Radiance 7:364–373

    Google Scholar 

  • Li J, Wang L, Mamon H, Kulke MH, Berbeco RGM, Makrigiorgos GM (2008) Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing. Nat Med 14:579–584

    Article  PubMed  CAS  Google Scholar 

  • Lim YY, Lim TT, Tee JJ (2007) Antioxidant properties of several tropical fruits: a comparative study. Food Chem 103:1003–1008

    Article  CAS  Google Scholar 

  • MacDonald-Wicks LK, Wood LG, Garg ML (2006) Methodology for the determination of biological antioxidant capacity in vitro: a review. J Sci Food Agric 86(13):2046–2056

    Article  CAS  Google Scholar 

  • Manshardt A (1992) Papaya. In: Hammerschlag FA, Ritz RE (eds) Biotechnology in agriculture, No 8. Biotechnology of perennial fruit crops. CABI, Willingford, pp 489–511

    Google Scholar 

  • McCallum CM, Comai L, Greena EA, Henikoff S (2000) Targeting Induced Local Lesions IN Genomes (ADP) for plant functional genomics. Plant Physiol 123:439–442

    Article  PubMed  CAS  Google Scholar 

  • Milbury CA, Li J, Makrigiorgos GM (2010) Ice-COLD-PCR enables rapid amplification and robust enrichment for low-abundance unknown DNA. Nucleic Acids Res 14:579–584

    Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  PubMed  CAS  Google Scholar 

  • Nicaise V, German-Retana S, Sanjuan R, Dubrana MP, Mazier M, Maisonneuve B, Candresse T, Caranta C, LeGall O (2003) The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the potyvirus Lettuce mosaic virus. Plant Physiol 132:1272–1282

    Article  PubMed  CAS  Google Scholar 

  • Nieto C, Morales M, Orjeda G, Clepet C, Monfort A, Sturbois B, Puigdomenech P, Pitrat M, Caboche M, Dogimont C, GarcĂ­a-Mas J, Aranda MA, Bendahmane A (2006) An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J 48:452–462

    Article  PubMed  CAS  Google Scholar 

  • Nieto C, Piron F, Dalmais M, Marco CF, Moriones E, GĂłmez-GuillamĂłn ML, Truniger V, GĂłmez P, Garcia-Mas J, Aranda MA, Bendahmane A (2007) EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. BMC Plant Biol 21:34

    Article  Google Scholar 

  • Nitsawang S, Hatti-Kaul R, Kanasawud P (2006) Purification of papain from Carica papaya latex: aqueous two-phase extraction versus two-step salt precipitation. Enzyme Microb Technol 39:1103–1107

    Article  CAS  Google Scholar 

  • Piron F, Nicolai M, Minoia S, Piednoir E, Moretti A, Salgues A, Zamir D, Caranta C, Bendahmane A (2010) An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLoS One 5(6):e11313

    Article  PubMed  Google Scholar 

  • Poel HJA, van Orsouw NJ, Hogers RCJ, de Both MTJ, van Eijk MJT (2009) High-throughput detection of induced mutations and natural variation using KeyPoint™ technology. PLoS One 4:e4761

    Article  PubMed  Google Scholar 

  • Rachel E (2008) Study decodes papaya genome. Sci News 173:16

    Google Scholar 

  • Ruffel S, Dussault MH, Palloix A, Moury B, Bendahmane A, Robaglia C, Caranta C (2002) A natural recessive resistance gene against Potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J 32:1067–1075

    Article  PubMed  CAS  Google Scholar 

  • Ruffel S, Gallois JL, Lesage ML, Caranta C (2005) The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Mol Genet Genomics 274:346–353

    Article  PubMed  CAS  Google Scholar 

  • Simsek O, Kacar YA (2010) Discovery of mutations with ADP and EcoADP in plant genomics. Sci Res Essays 5:3799–3882

    Google Scholar 

  • Starley IF, Mohammed P, Schneider G, Bickler SW (1999) The treatment of paediatric burns using topical papaya. Burns 25:636–639

    Article  PubMed  CAS  Google Scholar 

  • Tennant PF, Fermin GA, Roye ME (2007) Viruses infecting papaya (Carica papaya L.): etiology, pathogenesis and molecular biology. Plant Viruses 1:178–188

    Google Scholar 

  • Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19

    Google Scholar 

  • Tosi M, Verpy E, Meo T (2001) Detection of mutations by fluorescence assisted mismatch analysis (FAMA). Clin Mol Genet 119

    Google Scholar 

  • Tripathi S, Bau HJ, Chen LF, Yeh SD (2004) The ability of papaya ringspot virus strains overcoming the transgenic resistance of papaya conferred by the coat protein gene is not correlated with higher degree of sequence divergence from the transgene. Eur J Plant Pathol 110:871–882

    Article  CAS  Google Scholar 

  • Triques K, Piednoir E, Dalmais M, Schmidt J, Le Signor C, Sharkey M, Caboche M, Sturbois B, Bendahmane A (2008) Mutation detection using ENDO 1: application to disease diagnostics in humans and TILLING and Eco-TILLING in plants. BMC Mol Biol 9:42

    Article  PubMed  Google Scholar 

  • Tsai H, Howell T, Comai L (2011) Discovery of rare mutation in population: ADP by sequencing. Plant Physiol 156:1257–1268

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Na J-K, Yu Q, Gschwend AR, Han J, Zeng F, Aryal R, VanBuren R, Murray JE, Zhang W, PĂ©rez RN, Feltus FA, Lemke C, Tong EJ, Chen C, Wai CM, Singh R, Wang M-L, Min X, Alam M, Charlesworth D, Moore PH, Jiang J, Paterson AH, Ming R (2012) Sequencing papaya X and Yh chromosomes revealed molecular basis of incipient sex chromosome evolution. PNAS 109:13710–13715

    Article  PubMed  CAS  Google Scholar 

  • Wikstro MN, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond B 268:2211–2220

    Article  Google Scholar 

Website

Download references

Acknowledgments

We would like to thank Mr Uday Singh and Dr N. Anand (Namdhari Seeds) for financial support and encouragement. We also thank Dr A. Bendahmane (URGV lab, INRA) for advice on the TILLING approach and PRSV resistance. The contributions of all the glass house and field staff involved with the growing of the mutant populations are hereby acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manash Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kumar, P.K.A., Bhattacharya, A., Dutta, O.P., Chatterjee, M. (2014). Allele Discovery Platform (ADP) in Papaya (Carica papaya L.). In: Ming, R., Moore, P. (eds) Genetics and Genomics of Papaya. Plant Genetics and Genomics: Crops and Models, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8087-7_22

Download citation

Publish with us

Policies and ethics