Skip to main content

RUNX2 Transcriptional Regulation in Development and Disease

  • Chapter
  • First Online:
Nuclear Signaling Pathways and Targeting Transcription in Cancer

Abstract

RUNX2, a member of the Runt family of transcription factors, plays important roles in embryonic development to promote osteogenesis and angiogenesis. RUNX2 has been implicated in the promotion of disease, including cleidocranial dysplasia, in cancer progression, and in metastasis of breast and prostate tumors. Its aberrant expression in disease states may be the result of several mechanisms such as haploinsufficiency, mutation, or amplification. In osteogenesis and cancer progression, interactions with core-binding factor-β (Cbf-β) and other cofactors are responsible for the regulation of target gene expression including, but not limited to, VEGF, osteopontin, osteocalcin, MMPs, and BMPs. RUNX2 transcriptional function within cells is regulated by signal transduction events leading to activation of ERK, Smads, cdks, and Akt, which result in phosphorylation, DNA binding, and transcriptional activation or repression of target genes. Constitutive activation of signaling pathways in tumor cells results in aberrant expression and activation of RUNX2. Specific RUNX2 targeting agents, therefore, may bypass the effects of redundant signal transduction pathways within cancer cells and be an effective therapeutic strategy for treatment of RUNX2-positive cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1,25-OH D3:

1,25-OH Vitamin D3

AA:

Amino acid

Akt:

v-akt murine thymomaviral oncogene homolog 1 (aka: protein kinase B or PKB)

AML:

Acute myeloid leukemia

AR:

Aldose reductase (Context dependent. Not to be confused with androgen receptor)

AR:

Androgen receptor (Context dependent. Not to be confused with aldose reductase)

Atf6:

Activating transcription factor 6

BMP:

Bone morphogenetic protein

BMP-2:

Bone morphogenetic protein-2

BR-DIM:

3,3′-diindolylmethane

BSP:

Bone sialoprotein (aka: OPN)

C/EBPβ:

CCAAT/enhancer binding protein beta

CBFα:

Core-binding factor alpha

Cbf-β:

Core-binding factor subunit beta

Cbfβ-SMMHC:

Core binding factor β – smooth muscle myosin heavy chain

CBP:

CREB-binding protein

CCD:

Cleidocranial dysplasia

Cdk:

Cyclin-dependent kinase

CML:

Chronic myeloid leukemia

c-myc:

v-myc avian myelocytomatosis viral oncogene homolog

CoAA:

Co-activator activator

CSC:

Cancer stem cell

CSF2:

Colony stimulating factor 2

CST7:

Cystatin-7 (aka: cystatin-F or leukocystatin)

CTGF:

Connective tissue growth factor

Cx43:

Connexin 43

D-ELISA:

Deoxyribonucleic acid binding-enzyme-linked immunosorbent assay

DNA:

Deoxyribonucleic acid

EC:

Endothelial cell

EMT:

Epithelial mesenchymal transition

ERK:

Extracellular signal-regulated kinase

ERα:

Estrogen receptor alpha

EWS-FLI:

Ewing’s sarcoma breakpoint region 1 t(1122)(q24q12)

FGF2:

Fibroblast growth factor 2 (basic)

FGF2R:

Fibroblast growth factor 2 receptor

FoxO1:

Forkhead box O1

G9a:

Histone-lysine N-methyltransferase H3 lysine 9 specific 3 (aka: euchromatic histone-lysine N-methyltransferase)

GPCR:

G-protein coupled receptor

HBME:

Human bone marrow endothelial cell

HDAC:

Histone deacetylase

HG:

Hyperglycemia

HIF1-α:

Hypoxia inducible factor 1 alpha subunit

HUVEC:

Human umbilical vein endothelial cell

IGF-1:

Insulin-like growth factor-1

IGF-1R:

Insulin-like growth factor 1 receptor

Ihh:

Indian hedgehog

IL8:

Interleukin 8

JNK:

c-jun-N-terminal kinase

MAPK:

Mitogen-activated protein kinase

MET:

Mesenchymal epithelial transition

miRNA:

Micro-ribonucleic acid

MLK3:

MAP3K mixed-lineage kinase 3

MM:

Multiple myeloma

MMP:

Matrix metalloproteinase

MORF:

Monocyte leukemia zinc finger related factor

MOZ:

Monocyte leukemia zinc finger protein

mRNA:

Messenger ribonucleic acid

mSin3a:

Mammalian transcriptional corepressors Sin3a

NBIF:

Neobavaisoflavone

NLS:

Nuclear localization signal

NMTS:

Nuclear matrix targeting signal

OPN:

Osteopontin (aka: BSP)

p21CIP1 :

Cyclin-dependent kinase inhibitor 1A

p27:

Cyclin-dependent kinase inhibitor 1B

p300:

E1A binding protein p300

p38:

p38 mitogen activated protein kinase

PEBP2α:

Polyomavirus enhancer-binding protein 2 alpha

PI3K:

Phosphoinositide-3-kinase

PIP:

Prolactin-induced protein

PKC:

Protein kinase C

PlxnA2:

Plexin A2

PSA:

Prostate specific antigen

PTEN:

Phosphatase and tensin homolog

PTHrP:

Parathyroid hormone-related protein

RANKL:

Receptor activator of nuclear factor kappa-B ligand

RNA:

Ribonucleic acid

Rorβ:

Retinoid-related orphan receptor beta

rRNA:

Ribosomal ribonucleic acid

RUNX1/2/3:

Runt-related transcription factor 1/2/3

SDC2:

Syndecan 2

SDF1:

Stromal cell-derived factor 1

SH3PXD2A:

SH3 and PX domain-containing protein 2A

shRNA:

Small hairpin ribonucleic acid

siRNA:

Small interfering ribonucleic acid

Smad:

Sma and mad related proteins

Smurf:

Smad specific E3 ubiquitin protein ligase

SNAI2:

Snail homolog 2/slug

SNP:

Single nucleotide polymorphism

Sox9:

Sex determining region Y-box 9 transcription factor

Suv39h1:

Suppressor of variegation 3–9 homolog 1

TAZ:

Transcriptional coactivator with a PDZ-binding motif

TGF-β:

Transforming growth factor beta

TLE-1:

Transducin-like enhancer protein 1

TLE2/3:

Transducin-like enhancer protein 2/3

UV:

Ultraviolet

VDR:

Vitamin D receptor

VEGF:

Vascular endothelial growth factor

Wip1:

Protein phosphatase magnesium-dependent 1 delta

WWOX:

WW domain containing oxidoreductase

WWP1:

WW domaincontaining E3 ubiquitin protein ligase 1

YAP:

Yes-associated protein

References

  1. Anglin I, Passaniti A (2004) Runx protein signaling in human cancers. Cancer Treat Res 119:189–215

    PubMed  CAS  Google Scholar 

  2. Ito Y (2008) RUNX genes in development and cancer: regulation of viral gene expression and the discovery of RUNX family genes. Adv Cancer Res 99:33–76

    PubMed  CAS  Google Scholar 

  3. Blyth K, Cameron ER, Neil JC (2005) The RUNX genes: gain or loss of function in cancer. Nat Rev Cancer 5(5):376–387

    PubMed  CAS  Google Scholar 

  4. Ito Y (2004) Oncogenic potential of the RUNX gene family: ‘overview’. Oncogene 23(24):4198–4208

    PubMed  CAS  Google Scholar 

  5. Jonason JH, Xiao G, Zhang M, Xing L, Chen D (2009) Post-translational regulation of Runx2 in bone and cartilage. J Dent Res 88(8):693–703

    PubMed  CAS  Google Scholar 

  6. Zaidi SK, Javed A, Pratap J, Schroeder TM, Westendorf JJ, Lian JB et al (2006) Alterations in intranuclear localization of Runx2 affect biological activity. J Cell Physiol 209(3):935–942

    PubMed  CAS  Google Scholar 

  7. Soung DY, Talebian L, Matheny CJ, Guzzo R, Speck ME, Lieberman JR et al (2012) Runx1 dose-dependently regulates endochondral ossification during skeletal development and fracture healing. J Bone Miner Res 27(7):1585–1597

    CAS  Google Scholar 

  8. Pratap J, Lian JB, Stein GS (2011) Metastatic bone disease: role of transcription factors and future targets. Bone 48(1):30–36

    PubMed  CAS  Google Scholar 

  9. Lou Y, Javed A, Hussain S, Colby J, Frederick D, Pratap J et al (2009) A Runx2 threshold for the cleidocranial dysplasia phenotype. Hum Mol Genet 18(3):556–568

    PubMed  CAS  Google Scholar 

  10. Zhang X, Ting K, Pathmanathan D, Ko T, Chen W, Chen F et al (2012) Calvarial cleidocraniodysplasia-like defects with ENU-induced Nell-1 deficiency. J Craniofac Surg 23(1):61–66

    PubMed  CAS  Google Scholar 

  11. Dalle Carbonare L, Innamorati G, Valenti MT (2011) Transcription factor Runx2 and its application to bone tissue engineering. Stem Cell Rev 8(3):891–897

    Google Scholar 

  12. Liu JC, Lengner CJ, Gaur T, Lou Y, Hussain S, Jones MD et al (2011) Runx2 protein expression utilizes the Runx2 P1 promoter to establish osteoprogenitor cell number for normal bone formation. J Biol Chem 286(34):30057–30070

    PubMed  CAS  Google Scholar 

  13. Stein GS, Lian JB, van Wijnen AJ, Stein JL, Montecino M, Javed A et al (2004) Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene 23(24):4315–4329

    PubMed  CAS  Google Scholar 

  14. Zelzer E, Glotzer DJ, Hartmann C, Thomas D, Fukai N, Soker S et al (2001) Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2. Mech Dev 106(1–2):97–106

    PubMed  CAS  Google Scholar 

  15. Bronckers AL, Sasaguri K, Cavender AC, D’Souza RN, Engelse MA (2005) Expression of Runx2/Cbfa1/Pebp2alphaA during angiogenesis in postnatal rodent and fetal human orofacial tissues. J Bone Miner Res 20(3):428–437

    PubMed  CAS  Google Scholar 

  16. Barnes GL, Hebert KE, Kamal M, Javed A, Einhorn TA, Lian JB et al (2004) Fidelity of Runx2 activity in breast cancer cells is required for the generation of metastases-associated osteolytic disease. Cancer Res 64(13):4506–4513

    PubMed  CAS  Google Scholar 

  17. Pratap J, Lian JB, Javed A, Barnes GL, van Wijnen AJ, Stein JL et al (2006) Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev 25(4):589–600

    PubMed  CAS  Google Scholar 

  18. Kwon TG, Zhao X, Yang Q, Li Y, Ge C, Zhao G et al (2011) Physical and functional interactions between Runx2 and HIF-1alpha induce vascular endothelial growth factor gene expression. J Cell Biochem 112(12):3582–3593

    PubMed  CAS  Google Scholar 

  19. Sun L, Vitolo M, Passaniti A (2001) Runt-related gene 2 in endothelial cells: inducible expression and specific regulation of cell migration and invasion. Cancer Res 61(13):4994–5001

    PubMed  CAS  Google Scholar 

  20. Pierce AD, Anglin IE, Vitolo MI, Mochin MT, Underwood KF, Goldblum SE et al (2012) Glucose-activated RUNX2 phosphorylation promotes endothelial cell proliferation and an angiogenic phenotype. J Cell Biochem 113(1):282–292

    PubMed  CAS  Google Scholar 

  21. Vitolo MI, Anglin IE, Mahoney WM Jr, Renoud KJ, Gartenhaus RB, Bachman KE et al (2007) The RUNX2 transcription factor cooperates with the YES-associated protein, YAP65, to promote cell transformation. Cancer Biol Ther 6(6):856–863

    PubMed  CAS  Google Scholar 

  22. D’Souza DR, Salib MM, Bennett J, Mochin-Peters M, Asrani K, Goldblum SE et al (2009) Hyperglycemia regulates RUNX2 activation and cellular wound healing through the aldose reductase polyol pathway. J Biol Chem 284(27):17947–17955

    PubMed  Google Scholar 

  23. Qiao M, Shapiro P, Fosbrink M, Rus H, Kumar R, Passaniti A (2006) Cell cycle-dependent phosphorylation of the RUNX2 transcription factor by cdc2 regulates endothelial cell proliferation. J Biol Chem 281(11):7118–7128

    PubMed  CAS  Google Scholar 

  24. San Martin IA, Varela N, Gaete M, Villegas K, Osorio M, Tapia JC et al (2009) Impaired cell cycle regulation of the osteoblast-related heterodimeric transcription factor Runx2-Cbfbeta in osteosarcoma cells. J Cell Physiol 221(3):560–571

    PubMed  CAS  Google Scholar 

  25. Underwood KF, D’Souza DR, Mochin-Peters M, Pierce AD, Kommineni S, Choe M et al (2012) Regulation of RUNX2 transcription factor-DNA interactions and cell proliferation by vitamin D3 (cholecalciferol) prohormone activity. J Bone Miner Res 27(4):913–925

    PubMed  CAS  Google Scholar 

  26. Fang CY, Xue JJ, Tan L, Jiang CH, Gao QP, Liang DS et al (2011) A novel single-base deletion mutation of the RUNX2 gene in a Chinese family with cleidocranial dysplasia. Genet Mol Res 10(4):3539–3544

    PubMed  CAS  Google Scholar 

  27. Sugawara M, Kato N, Tsuchiya T, Motoyama T (2011) RUNX2 expression in developing human bones and various bone tumors. Pathol Int 61(10):565–571

    PubMed  CAS  Google Scholar 

  28. Sase T, Suzuki T, Miura K, Shiiba K, Sato I, Nakamura Y et al (2012) Runt-related transcription factor 2 in human colon carcinoma: a potent prognostic factor associated with estrogen receptor. Int J Cancer 131(10):2284–2293

    PubMed  CAS  Google Scholar 

  29. Slattery ML, Lundgreen A, Herrick JS, Caan BJ, Potter JD, Wolff RK (2011) Associations between genetic variation in RUNX1, RUNX2, RUNX3, MAPK1 and eIF4E and risk of colon and rectal cancer: additional support for a TGF-beta-signaling pathway. Carcinogenesis 32(3):318–326

    PubMed  CAS  Google Scholar 

  30. Eliseev RA, Dong YF, Sampson E, Zuscik MJ, Schwarz EM, O’Keefe RJ et al (2008) Runx2-mediated activation of the Bax gene increases osteosarcoma cell sensitivity to apoptosis. Oncogene 27(25):3605–3614

    PubMed  CAS  Google Scholar 

  31. Kurek KC, Del Mare S, Salah Z, Abdeen S, Sadiq H, Lee SH et al (2010) Frequent attenuation of the WWOX tumor suppressor in osteosarcoma is associated with increased tumorigenicity and aberrant RUNX2 expression. Cancer Res 70(13):5577–5586

    PubMed  CAS  Google Scholar 

  32. Martin JW, Zielenska M, Stein GS, van Wijnen AJ, Squire JA (2011) The role of RUNX2 in osteosarcoma oncogenesis. Sarcoma 2011:282745

    PubMed  CAS  Google Scholar 

  33. Sadikovic B, Thorner P, Chilton-Macneill S, Martin JW, Cervigne NK, Squire J et al (2010) Expression analysis of genes associated with human osteosarcoma tumors shows correlation of RUNX2 overexpression with poor response to chemotherapy. BMC Cancer 10:202

    PubMed  Google Scholar 

  34. van der Deen M, Akech J, Lapointe D, Gupta S, Young DW, Montecino MA et al (2012) Genomic promoter occupancy of runt-related transcription factor RUNX2 in osteosarcoma cells identifies genes involved in cell adhesion and motility. J Biol Chem 287(7):4503–4517

    PubMed  Google Scholar 

  35. Won KY, Park HR, Park YK (2009) Prognostic implication of immunohistochemical Runx2 expression in osteosarcoma. Tumori 95(3):311–316

    PubMed  CAS  Google Scholar 

  36. Little GH, Noushmehr H, Baniwal SK, Berman BP, Coetzee GA, Frenkel B (2012) Genome-wide Runx2 occupancy in prostate cancer cells suggests a role in regulating secretion. Nucleic Acids Res 40(8):3538–3547

    PubMed  CAS  Google Scholar 

  37. Akech J, Wixted JJ, Bedard K, van der Deen M, Hussain S, Guise TA et al (2010) Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene 29(6):811–821

    PubMed  CAS  Google Scholar 

  38. Baniwal SK, Khalid O, Gabet Y, Shah RR, Purcell DJ, Mav D et al (2010) Runx2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis. Mol Cancer 9:258

    PubMed  Google Scholar 

  39. Baniwal SK, Little GH, Chimge NO, Frenkel B (2012) Runx2 controls a feed-forward loop between androgen and prolactin-induced protein (PIP) in stimulating T47D cell proliferation. J Cell Physiol 227(5):2276–2282

    PubMed  CAS  Google Scholar 

  40. Hernandez LL, Gregerson KA, Horseman ND (2012) Mammary gland serotonin regulates parathyroid hormone-related protein and other bone-related signals. Am J Physiol Endocrinol Metab 302(8):E1009–E1015

    PubMed  CAS  Google Scholar 

  41. Leong DT, Lim J, Goh X, Pratap J, Pereira BP, Kwok HS et al (2010) Cancer-related ectopic expression of the bone-related transcription factor RUNX2 in non-osseous metastatic tumor cells is linked to cell proliferation and motility. Breast Cancer Res 12(5):R89

    PubMed  Google Scholar 

  42. Mendoza-Villanueva D, Zeef L, Shore P (2011) Metastatic breast cancer cells inhibit osteoblast differentiation through the Runx2/CBFbeta-dependent expression of the Wnt antagonist, sclerostin. Breast Cancer Res 13(5):R106

    PubMed  CAS  Google Scholar 

  43. Onodera Y, Miki Y, Suzuki T, Takagi K, Akahira J, Sakyu T et al (2010) Runx2 in human breast carcinoma: its potential roles in cancer progression. Cancer Sci 101(12):2670–2675

    PubMed  CAS  Google Scholar 

  44. Purcell DJ, Khalid O, Ou CY, Little GH, Frenkel B, Baniwal SK et al (2012) Recruitment of coregulator G9a by Runx2 for selective enhancement or suppression of transcription. J Cell Biochem 113(7):2406–2414

    PubMed  CAS  Google Scholar 

  45. Reufsteck C, Lifshitz-Shovali R, Zepp M, Bauerle T, Kubler D, Golomb G et al (2012 Jun) Silencing of skeletal metastasis-associated genes impairs migration of breast cancer cells and reduces osteolytic bone lesions. Clin Exp Metastasis 29(5):441–456

    CAS  Google Scholar 

  46. van der Deen M, Akech J, Wang T, FitzGerald TJ, Altieri DC, Languino LR et al (2010) The cancer-related Runx2 protein enhances cell growth and responses to androgen and TGFbeta in prostate cancer cells. J Cell Biochem 109(4):828–837

    PubMed  Google Scholar 

  47. Pratap J, Imbalzano KM, Underwood JM, Cohet N, Gokul K, Akech J et al (2009) Ectopic runx2 expression in mammary epithelial cells disrupts formation of normal acini structure: implications for breast cancer progression. Cancer Res 69(17):6807–6814

    PubMed  CAS  Google Scholar 

  48. Chimge NO, Baniwal SK, Luo J, Coetzee S, Khalid O, Berman BP et al (2012) Opposing effects of Runx2 and estradiol on breast cancer cell proliferation: in vitro identification of reciprocally regulated gene signature related to clinical letrozole responsiveness. Clin Cancer Res 18(3):901–911

    PubMed  CAS  Google Scholar 

  49. Kuo YH, Zaidi SK, Gornostaeva S, Komori T, Stein GS, Castilla LH (2009) Runx2 induces acute myeloid leukemia in cooperation with Cbfbeta-SMMHC in mice. Blood 113(14):3323–3332

    PubMed  CAS  Google Scholar 

  50. Shim JH, Greenblatt MB, Singh A, Brady N, Hu D, Drapp R et al (2012) Administration of BMP2/7 in utero partially reverses Rubinstein-Taybi syndrome-like skeletal defects induced by Pdk1 or Cbp mutations in mice. J Clin Invest 122(1):91–106

    PubMed  CAS  Google Scholar 

  51. Jang WG, Kim EJ, Kim DK, Ryoo HM, Lee KB, Kim SH et al (2012) BMP2 protein regulates osteocalcin expression via Runx2-mediated Atf6 gene transcription. J Biol Chem 287(2):905–915

    PubMed  CAS  Google Scholar 

  52. Hirata M, Kugimiya F, Fukai A, Saito T, Yano F, Ikeda T et al (2012) C/EBPbeta and RUNX2 cooperate to degrade cartilage with MMP-13 as the target and HIF-2alpha as the inducer in chondrocytes. Hum Mol Genet 21(5):1111–1123

    PubMed  CAS  Google Scholar 

  53. Mak IW, Cowan RW, Popovic S, Colterjohn N, Singh G, Ghert M (2009) Upregulation of MMP-13 via Runx2 in the stromal cell of giant cell tumor of bone. Bone 45(2):377–386

    PubMed  CAS  Google Scholar 

  54. Singh S, Mak IW, Cowan RW, Turcotte R, Singh G, Ghert M (2011) The role of TWIST as a regulator in giant cell tumor of bone. J Cell Biochem 112(9):2287–2295

    PubMed  CAS  Google Scholar 

  55. Takarada T, Yoneda Y (2009) Transactivation by Runt related factor-2 of matrix metalloproteinase-13 in astrocytes. Neurosci Lett 451(2):99–104

    PubMed  CAS  Google Scholar 

  56. Ohyama Y, Tanaka T, Shimizu T, Matsui H, Sato H, Koitabashi N et al (2012) Runx2/Smad3 complex negatively regulates TGF-beta-induced connective tissue growth factor gene expression in vascular smooth muscle cells. J Atheroscler Thromb 19(1):23–35

    PubMed  CAS  Google Scholar 

  57. Ali SA, Dobson JR, Lian JB, Stein JL, van Wijnen AJ, Zaidi SK et al (2012) A Runx2-HDAC1 co-repressor complex regulates rRNA gene expression by modulating UBF acetylation. J Cell Sci 125(Pt 11):2732–2739

    PubMed  CAS  Google Scholar 

  58. Ali SA, Zaidi SK, Dobson JR, Shakoori AR, Lian JB, Stein JL et al (2010) Transcriptional corepressor TLE1 functions with Runx2 in epigenetic repression of ribosomal RNA genes. Proc Natl Acad Sci USA 107(9):4165–4169

    PubMed  CAS  Google Scholar 

  59. Zhang Z, Deepak V, Meng L, Wang L, Li Y, Jiang Q et al (2012) Analysis of HDAC1-mediated regulation of Runx2-induced osteopontin gene expression in C3h10t1/2 cells. Biotechnol Lett 34(2):197–203

    PubMed  CAS  Google Scholar 

  60. Jensen ED, Schroeder TM, Bailey J, Gopalakrishnan R, Westendorf JJ (2008) Histone deacetylase 7 associates with Runx2 and represses its activity during osteoblast maturation in a deacetylation-independent manner. J Bone Miner Res 23(3):361–372

    PubMed  CAS  Google Scholar 

  61. Zhang H, Pan Y, Zheng L, Choe C, Lindgren B, Jensen ED et al (2011) FOXO1 inhibits Runx2 transcriptional activity and prostate cancer cell migration and invasion. Cancer Res 71(9):3257–3267

    PubMed  CAS  Google Scholar 

  62. Chen G, Deng C, Li YP (2012) TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8(2):272–288

    PubMed  CAS  Google Scholar 

  63. Javed A, Bae JS, Afzal F, Gutierrez S, Pratap J, Zaidi SK et al (2008) Structural coupling of Smad and Runx2 for execution of the BMP2 osteogenic signal. J Biol Chem 283(13):8412–8422

    PubMed  CAS  Google Scholar 

  64. Pratap J, Wixted JJ, Gaur T, Zaidi SK, Dobson J, Gokul KD et al (2008) Runx2 transcriptional activation of Indian Hedgehog and a downstream bone metastatic pathway in breast cancer cells. Cancer Res 68(19):7795–7802

    PubMed  CAS  Google Scholar 

  65. Nishimura R, Hata K, Matsubara T, Wakabayashi M, Yoneda T (2012) Regulation of bone and cartilage development by network between BMP signalling and transcription factors. J Biochem 151(3):247–254

    PubMed  CAS  Google Scholar 

  66. Ge C, Yang Q, Zhao G, Yu H, Kirkwood KL, Franceschi RT (2012) Interactions between extracellular signal-regulated kinase 1/2 and P38 map kinase pathways in the control of RUNX2 phosphorylation and transcriptional activity. J Bone Miner Res 27(3):538–551

    PubMed  CAS  Google Scholar 

  67. Li Y, Ge C, Long JP, Begun DL, Rodriguez JA, Goldstein SA et al (2012) Biomechanical stimulation of osteoblast gene expression requires phosphorylation of the RUNX2 transcription factor. J Bone Miner Res 27(6):1263–1274

    PubMed  CAS  Google Scholar 

  68. Zou W, Greenblatt MB, Shim JH, Kant S, Zhai B, Lotinun S et al (2011) MLK3 regulates bone development downstream of the faciogenital dysplasia protein FGD1 in mice. J Clin Invest 121(11):4383–4392

    PubMed  CAS  Google Scholar 

  69. Chen J, Yuan K, Mao X, Miano JM, Wu H, Chen Y (2012) Serum response factor regulates bone formation via IGF-1 and Runx2 signals. J Bone Miner Res 27(8):1659–1668

    PubMed  CAS  Google Scholar 

  70. Li Z, Wang Z, Yang L, Li X, Sasaki Y, Wang S et al (2010) Fibroblast growth factor 2 regulates bone sialoprotein gene transcription in human breast cancer cells. J Oral Sci 52(1):125–132

    PubMed  CAS  Google Scholar 

  71. Niger C, Buo AM, Hebert C, Duggan BT, Williams MS, Stains JP (2012) ERK acts in parallel to PKCdelta to mediate the connexin43-dependent potentiation of Runx2 activity by FGF2 in MC3T3 osteoblasts. Am J Physiol Cell Physiol 302(7):C1035–C1044

    PubMed  CAS  Google Scholar 

  72. Teplyuk NM, Haupt LM, Ling L, Dombrowski C, Mun FK, Nathan SS et al (2009) The osteogenic transcription factor Runx2 regulates components of the fibroblast growth factor/proteoglycan signaling axis in osteoblasts. J Cell Biochem 107(1):144–154

    PubMed  CAS  Google Scholar 

  73. Huang YF, Lin JJ, Lin CH, Su Y, Hung SC (2012) c-Jun N-terminal kinase 1 negatively regulates osteoblastic differentiation induced by BMP-2 via phosphorylation of Runx2 at Ser104. J Bone Miner Res 27(5):1093–1105

    PubMed  CAS  Google Scholar 

  74. Bae SC, Lee YH (2006) Phosphorylation, acetylation and ubiquitination: the molecular basis of RUNX regulation. Gene 366(1):58–66

    PubMed  CAS  Google Scholar 

  75. Tu X, Joeng KS, Long F (2012) Indian hedgehog requires additional effectors besides Runx2 to induce osteoblast differentiation. Dev Biol 362(1):76–82

    PubMed  CAS  Google Scholar 

  76. Shu B, Zhang M, Xie R, Wang M, Jin H, Hou W et al (2011) BMP2, but not BMP4, is crucial for chondrocyte proliferation and maturation during endochondral bone development. J Cell Sci 124(Pt 20):3428–3440

    PubMed  CAS  Google Scholar 

  77. Oh JE, Kim HJ, Kim WS, Lee ZH, Ryoo HM, Hwang SJ et al (2012) PlexinA2 mediates osteoblast differentiation via regulation of Runx2. J Bone Miner Res 27(3):552–562

    PubMed  CAS  Google Scholar 

  78. Yang DC, Yang MH, Tsai CC, Huang TF, Chen YH, Hung SC (2011) Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST. PLoS One 6(9):e23965

    PubMed  CAS  Google Scholar 

  79. Yuen HF, Kwok WK, Chan KK, Chua CW, Chan YP, Chu YY et al (2008) TWIST modulates prostate cancer cell-mediated bone cell activity and is upregulated by osteogenic induction. Carcinogenesis 29(8):1509–1518

    PubMed  CAS  Google Scholar 

  80. Zhang YY, Li X, Qian SW, Guo L, Huang HY, He Q et al (2012) Down-regulation of type I Runx2 mediated by dexamethasone is required for 3T3-L1 adipogenesis. Mol Endocrinol 26(5):798–808

    PubMed  Google Scholar 

  81. D’Souza S, del Prete D, Jin S, Sun Q, Huston AJ, Kostov FE et al (2011) Gfi1 expressed in bone marrow stromal cells is a novel osteoblast suppressor in patients with multiple myeloma bone disease. Blood 118(26):6871–6880

    PubMed  Google Scholar 

  82. Wu T, Zhou H, Hong Y, Li J, Jiang X, Huang H (2012) miR-30 family members negatively regulate osteoblast differentiation. J Biol Chem 287(10):7503–7511

    PubMed  CAS  Google Scholar 

  83. Saini S, Majid S, Yamamura S, Tabatabai L, Suh SO, Shahryari V et al (2011) Regulatory role of mir-203 in prostate cancer progression and metastasis. Clin Cancer Res 17(16):5287–5298

    PubMed  CAS  Google Scholar 

  84. Viticchie G, Lena AM, Latina A, Formosa A, Gregersen LH, Lund AH et al (2011) MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines. Cell Cycle 10(7):1121–1131

    PubMed  CAS  Google Scholar 

  85. Hassan MQ, Gordon JA, Beloti MM, Croce CM, van Wijnen AJ, Stein JL et al (2010) A network connecting Runx2, SATB2, and the miR-23a~27a~24-2 cluster regulates the osteoblast differentiation program. Proc Natl Acad Sci USA 107(46):19879–19884

    PubMed  CAS  Google Scholar 

  86. Zhang Y, Xie RL, Croce CM, Stein JL, Lian JB, van Wijnen AJ et al (2011) A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci USA 108(24):9863–9868

    PubMed  CAS  Google Scholar 

  87. Zhi X, Chen C (2012) WWP1: a versatile ubiquitin E3 ligase in signaling and diseases. Cell Mol Life Sci 69(9):1425–1434

    PubMed  CAS  Google Scholar 

  88. Li Y, Kong D, Ahmad A, Bao B, Sarkar FH (2012) Targeting bone remodeling by isoflavone and 3,3’-diindolylmethane in the context of prostate cancer bone metastasis. PLoS One 7(3):e33011

    PubMed  CAS  Google Scholar 

  89. Kong XH, Niu YB, Song XM, Zhao DD, Wang J, Wu XL et al (2012) Astragaloside II induces osteogenic activities of osteoblasts through the bone morphogenetic protein-2/MAPK and Smad1/5/8 pathways. Int J Mol Med 29(6):1090–1098

    PubMed  CAS  Google Scholar 

  90. Don MJ, Lin LC, Chiou WF (2012) Neobavaisoflavone stimulates osteogenesis via p38-mediated up-regulation of transcription factors and osteoid genes expression in MC3T3-E1 cells. Phytomedicine 19(6):551–561

    PubMed  CAS  Google Scholar 

  91. Eda H, Aoki K, Kato S, Okawa Y, Takada K, Tanaka T et al (2010) The proteasome inhibitor bortezomib inhibits FGF-2-induced reduction of TAZ levels in osteoblast-like cells. Eur J Haematol 85(1):68–75

    PubMed  CAS  Google Scholar 

  92. Fu J, Wang W, Liu YH, Lu H, Luo Y (2011) In vitro anti-angiogenic properties of LGD1069, a selective retinoid X-receptor agonist through down-regulating Runx2 expression on human endothelial cells. BMC Cancer 11:227

    PubMed  CAS  Google Scholar 

  93. Mohammad KS, Javelaud D, Fournier PG, Niewolna M, McKenna CR, Peng XH et al (2011) TGF-beta-RI kinase inhibitor SD-208 reduces the development and progression of melanoma bone metastases. Cancer Res 71(1):175–184

    PubMed  CAS  Google Scholar 

  94. Dalle Carbonare L, Frigo A, Francia G, Davi MV, Donatelli L, Stranieri C et al (2012) Runx2 mRNA expression in the tissue, serum, and circulating non-hematopoietic cells of patients with thyroid cancer. J Clin Endocrinol Metab 97(7):E1249–E1256

    PubMed  CAS  Google Scholar 

  95. Liao CP, Adisetiyo H, Liang M, Roy-Burman P (2010) Cancer stem cells and microenvironment in prostate cancer progression. Horm Cancer 1(6):297–305

    PubMed  CAS  Google Scholar 

  96. Liao CP, Adisetiyo H, Liang M, Roy-Burman P (2010) Cancer-associated fibroblasts enhance the gland-forming capability of prostate cancer stem cells. Cancer Res 70(18):7294–7303

    PubMed  CAS  Google Scholar 

  97. Wang L, Park P, Zhang H, La Marca F, Claeson A, Valdivia J et al (2011) BMP-2 inhibits the tumorigenicity of cancer stem cells in human osteosarcoma OS99-1 cell line. Cancer Biol Ther 11(5):457–463

    PubMed  CAS  Google Scholar 

  98. Zhang Y, Xie RL, Gordon J, Leblanc K, Stein JL, Lian JB et al (2012) Control of mesenchymal lineage progression by microRNAs targeting the skeletal gene regulators Trps1 and Runx2. J Biol Chem 287(26):21926–21935

    PubMed  CAS  Google Scholar 

  99. Hsu YL, Huang MS, Yang CJ, Hung JY, Wu LY, Kuo PL (2011) Lung tumor-associated osteoblast-derived bone morphogenetic protein-2 increased epithelial-to-mesenchymal transition of cancer by Runx2/Snail signaling pathway. J Biol Chem 286(43):37335–37346

    PubMed  CAS  Google Scholar 

  100. Jeong JH, Choi JY (2011) Interrelationship of Runx2 and estrogen pathway in skeletal tissues. BMB Rep 44(10):613–618

    PubMed  CAS  Google Scholar 

  101. Pratap J, Javed A, Languino LR, van Wijnen AJ, Stein JL, Stein GS et al (2005) The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol 25(19):8581–8591

    PubMed  CAS  Google Scholar 

  102. Lee SH, Che X, Jeong JH, Choi JY, Lee YJ, Lee YH et al (2012) Runx2 protein stabilizes hypoxia-inducible factor-1alpha through competition with von hippel-lindau protein (pVHL) and stimulates angiogenesis in growth plate hypertrophic chondrocytes. J Biol Chem 287(18):14760–14771

    PubMed  CAS  Google Scholar 

  103. Sun X, Wei L, Chen Q, Terek RM (2009) HDAC4 represses vascular endothelial growth factor expression in chondrosarcoma by modulating RUNX2 activity. J Biol Chem 284(33):21881–21890

    PubMed  CAS  Google Scholar 

  104. Peruzzi B, Cappariello A, Del Fattore A, Rucci N, De Benedetti F, Teti A (2012) c-Src and IL-6 inhibit osteoblast differentiation and integrate IGFBP5 signalling. Nat Commun 3:630

    PubMed  Google Scholar 

  105. Ding M, Lu Y, Abbassi S, Li F, Li X, Song Y et al (2012) Targeting Runx2 expression in hypertrophic chondrocytes impairs endochondral ossification during early skeletal development. J Cell Physiol 227(10):3446–3456

    PubMed  CAS  Google Scholar 

  106. Chimge NO, Baniwal SK, Little GH, Chen YB, Kahn M, Tripathy D et al (2011) Regulation of breast cancer metastasis by Runx2 and estrogen signaling: the role of SNAI2. Breast Cancer Res 13(6):R127

    PubMed  CAS  Google Scholar 

  107. Goloudina AR, Tanoue K, Hammann A, Fourmaux E, Le Guezennec X, Bulavin DV et al (2012) Wip1 promotes RUNX2-dependent apoptosis in p53-negative tumors and protects normal tissues during treatment with anticancer agents. Proc Natl Acad Sci USA 109(2):E68–E75

    PubMed  CAS  Google Scholar 

  108. Tandon M, Gokul K, Ali SA, Chen Z, Lian J, Stein GS et al (2012) Runx2 mediates epigenetic silencing of the bone morphogenetic protein-3B (BMP-3B/GDF10) in lung cancer cells. Mol Cancer 11(1):27

    PubMed  CAS  Google Scholar 

  109. Endo T, Kobayashi T (2010) Runx2 deficiency in mice causes decreased thyroglobulin expression and hypothyroidism. Mol Endocrinol 24(6):1267–1273

    PubMed  CAS  Google Scholar 

  110. Teplyuk NM, Zhang Y, Lou Y, Hawse JR, Hassan MQ, Teplyuk VI et al (2009) The osteogenic transcription factor runx2 controls genes involved in sterol/steroid metabolism, including CYP11A1 in osteoblasts. Mol Endocrinol 23(6):849–861

    PubMed  CAS  Google Scholar 

  111. Teplyuk NM, Galindo M, Teplyuk VI, Pratap J, Young DW, Lapointe D et al (2008) Runx2 regulates G protein-coupled signaling pathways to control growth of osteoblast progenitors. J Biol Chem 283(41):27585–27597

    PubMed  CAS  Google Scholar 

  112. Bond SR, Lau A, Penuela S, Sampaio AV, Underhill TM, Laird DW et al (2011) Pannexin 3 is a novel target for Runx2, expressed by osteoblasts and mature growth plate chondrocytes. J Bone Miner Res 26(12):2911–2922

    PubMed  CAS  Google Scholar 

  113. Lim M, Zhong C, Yang S, Bell AM, Cohen MB, Roy-Burman P (2010) Runx2 regulates survivin expression in prostate cancer cells. Lab Invest 90(2):222–233

    PubMed  CAS  Google Scholar 

  114. Vladimirova V, Waha A, Luckerath K, Pesheva P, Probstmeier R (2008) Runx2 is expressed in human glioma cells and mediates the expression of galectin-3. J Neurosci Res 86(11):2450–2461

    PubMed  CAS  Google Scholar 

  115. Zhang HY, Jin L, Stilling GA, Ruebel KH, Coonse K, Tanizaki Y et al (2009) RUNX1 and RUNX2 upregulate Galectin-3 expression in human pituitary tumors. Endocrine 35(1):101–111

    PubMed  CAS  Google Scholar 

  116. Hoeppner LH, Secreto F, Jensen ED, Li X, Kahler RA, Westendorf JJ (2009) Runx2 and bone morphogenic protein 2 regulate the expression of an alternative Lef1 transcript during osteoblast maturation. J Cell Physiol 221(2):480–489

    PubMed  CAS  Google Scholar 

  117. Endo T, Ohta K, Kobayashi T (2008) Expression and function of Cbfa-1/Runx2 in thyroid papillary carcinoma cells. J Clin Endocrinol Metab 93(6):2409–2412

    PubMed  CAS  Google Scholar 

  118. Makita N, Suzuki M, Asami S, Takahata R, Kohzaki D, Kobayashi S et al (2008) Two of four alternatively spliced isoforms of RUNX2 control osteocalcin gene expression in human osteoblast cells. Gene 413(1–2):8–17

    PubMed  CAS  Google Scholar 

  119. Li X, Hoeppner LH, Jensen ED, Gopalakrishnan R, Westendorf JJ (2009) Co-activator activator (CoAA) prevents the transcriptional activity of Runt domain transcription factors. J Cell Biochem 108(2):378–387

    PubMed  CAS  Google Scholar 

  120. Mendoza-Villanueva D, Deng W, Lopez-Camacho C, Shore P (2010) The Runx transcriptional co-activator, CBFbeta, is essential for invasion of breast cancer cells. Mol Cancer 9:171

    PubMed  Google Scholar 

  121. Roforth MM, Liu G, Khosla S, Monroe DG (2012) Examination of nuclear receptor expression in osteoblasts reveals Rorbeta as an important regulator of osteogenesis. J Bone Miner Res 27(4):891–901

    PubMed  CAS  Google Scholar 

  122. Westendorf JJ (2006) Transcriptional co-repressors of Runx2. J Cell Biochem 98(1):54–64

    PubMed  CAS  Google Scholar 

  123. Byun MR, Jeong H, Bae SJ, Kim AR, Hwang ES, Hong JH (2012) TAZ is required for the osteogenic and anti-adipogenic activities of kaempferol. Bone 50(1):364–372

    PubMed  CAS  Google Scholar 

  124. Baniwal SK, Khalid O, Sir D, Buchanan G, Coetzee GA, Frenkel B (2009) Repression of Runx2 by androgen receptor (AR) in osteoblasts and prostate cancer cells: AR binds Runx2 and abrogates its recruitment to DNA. Mol Endocrinol 23(8):1203–1214

    PubMed  CAS  Google Scholar 

  125. Del Mare S, Kurek KC, Stein GS, Lian JB, Aqeilan RI (2011) Role of the WWOX tumor suppressor gene in bone homeostasis and the pathogenesis of osteosarcoma. Am J Cancer Res 1(5):585–594

    PubMed  Google Scholar 

  126. Li X, McGee-Lawrence ME, Decker M, Westendorf JJ (2010) The Ewing’s sarcoma fusion protein, EWS-FLI, binds Runx2 and blocks osteoblast differentiation. J Cell Biochem 111(4):933–943

    PubMed  CAS  Google Scholar 

  127. Blyth K, Vaillant F, Hanlon L, Mackay N, Bell M, Jenkins A et al (2006) Runx2 and MYC collaborate in lymphoma development by suppressing apoptotic and growth arrest pathways in vivo. Cancer Res 66(4):2195–2201

    PubMed  CAS  Google Scholar 

  128. Chua CW, Chiu YT, Yuen HF, Chan KW, Man K, Wang X et al (2009) Suppression of androgen-independent prostate cancer cell aggressiveness by FTY720: validating Runx2 as a potential antimetastatic drug screening platform. Clin Cancer Res 15(13):4322–4335

    PubMed  CAS  Google Scholar 

  129. Das K, Leong DT, Gupta A, Shen L, Putti T, Stein GS et al (2009) Positive association between nuclear Runx2 and oestrogen-progesterone receptor gene expression characterises a biological subtype of breast cancer. Eur J Cancer 45(13):2239–2248

    PubMed  CAS  Google Scholar 

  130. Dy P, Wang W, Bhattaram P, Wang Q, Wang L, Ballock RT et al (2012) Sox9 directs hypertrophic maturation and blocks osteoblast differentiation of growth plate chondrocytes. Dev Cell 22(3):597–609

    PubMed  CAS  Google Scholar 

  131. Giuliani N, Mangoni M, Rizzoli V (2009) Osteogenic differentiation of mesenchymal stem cells in multiple myeloma: identification of potential therapeutic targets. Exp Hematol 37(8):879–886

    PubMed  CAS  Google Scholar 

  132. Hassan MQ, Saini S, Gordon JA, van Wijnen AJ, Montecino M, Stein JL et al (2009) Molecular switches involving homeodomain proteins, HOXA10 and RUNX2 regulate osteoblastogenesis. Cells Tissues Organs 189(1–4):122–125

    PubMed  CAS  Google Scholar 

  133. Jonsson S, Hjorth-Hansen H, Olsson B, Wadenvik H, Sundan A, Standal T (2012) Imatinib inhibits proliferation of human mesenchymal stem cells and promotes early but not late osteoblast differentiation in vitro. J Bone Miner Metab 30(1):119–123

    PubMed  Google Scholar 

  134. Kawato Y, Hirao M, Ebina K, Tamai N, Shi K, Hashimoto J et al (2011) Nkx3.2-induced suppression of Runx2 is a crucial mediator of hypoxia-dependent maintenance of chondrocyte phenotypes. Biochem Biophys Res Commun 416(1–2):205–210

    PubMed  CAS  Google Scholar 

  135. Kayed H, Jiang X, Keleg S, Jesnowski R, Giese T, Berger MR et al (2007) Regulation and functional role of the Runt-related transcription factor-2 in pancreatic cancer. Br J Cancer 97(8):1106–1115

    PubMed  CAS  Google Scholar 

  136. Pockwinse SM, Kota KP, Quaresma AJ, Imbalzano AN, Lian JB, van Wijnen AJ et al (2011) Live cell imaging of the cancer-related transcription factor RUNX2 during mitotic progression. J Cell Physiol 226(5):1383–1389

    PubMed  CAS  Google Scholar 

  137. Pockwinse SM, Rajgopal A, Young DW, Mujeeb KA, Nickerson J, Javed A et al (2006) Microtubule-dependent nuclear-cytoplasmic shuttling of Runx2. J Cell Physiol 206(2): 354–362

    PubMed  CAS  Google Scholar 

  138. Qiao M, Shapiro P, Kumar R, Passaniti A (2004) Insulin-like growth factor-1 regulates endogenous RUNX2 activity in endothelial cells through a phosphatidylinositol 3-kinase/ERK-dependent and Akt-independent signaling pathway. J Biol Chem 279(41):42709–42718

    PubMed  CAS  Google Scholar 

  139. Zhang Y, Su J, Yu J, Bu X, Ren T, Liu X et al (2011) An essential role of discoidin domain receptor 2 (DDR2) in osteoblast differentiation and chondrocyte maturation via modulation of Runx2 activation. J Bone Miner Res 26(3):604–617

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino Passaniti Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brusgard, J.L., Passaniti, A. (2014). RUNX2 Transcriptional Regulation in Development and Disease. In: Kumar, R. (eds) Nuclear Signaling Pathways and Targeting Transcription in Cancer. Cancer Drug Discovery and Development. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8039-6_3

Download citation

Publish with us

Policies and ethics