Skip to main content

A Dynamic CAPM with Supply Effect Theory and Empirical Results

  • Reference work entry
  • First Online:
Handbook of Financial Econometrics and Statistics

Abstract

Breeden (1979) and Grinols (1984) and Cox et al. (1985) have described the importance of supply side for the capital asset pricing. Black (1976) derives a dynamic, multiperiod CAPM, integrating endogenous demand and supply. However, Black’s theoretically elegant model has never been empirically tested for its implications in dynamic asset pricing. We first theoretically extend Black’s CAPM. Then, we use price, dividend per share, and earnings per share to test the existence of supply effect with US equity data. We find the supply effect is important in US domestic stock markets. This finding holds as we break the companies listed in the S&P 500 into ten portfolios by different level of payout ratio. It also holds consistently if we use individual stock data.

A simultaneous equation system is constructed through a standard structural form of a multiperiod equation to represent the dynamic relationship between supply and demand for capital assets. The equation system is exactly identified under our specification. Then, two hypotheses related to supply effect are tested regarding the parameters in the reduced form system. The equation system is estimated by the seemingly unrelated regression (SUR) method, since SUR allow one to estimate the presented system simultaneously while accounting for the correlated errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This dynamic asset pricing model is different from Merton’s (1973) intertemporal asset pricing model in two key aspects. First, Black’s model is derived in the form of simultaneous equations. Second, Black’s model is derived in terms of price change, and Merton’s model is derived in terms of rates of return.

  2. 2.

    It should be noted that Lo and Wang’s model did not explicitly introduce the supply equation in asset pricing determination. Also, one can identify the hedging portfolio using volume data in the Lo and Wang model setting.

  3. 3.

    The basic assumptions are as follows: (1) a single period moving horizon for all investors; (2) no transaction costs or taxes on individuals; (3) the existence of a risk-free asset with rate of return, r*; (4) evaluation of the uncertain returns from investments in terms of expected return and variance of end-of-period wealth; and (5) unlimited short sales or borrowing of the risk-free asset.

  4. 4.

    Theories as to why taxes and penalties affect capital structure are first proposed by Modigliani and Miller (1958) and then Miller (1977). Another market imperfection, prohibition on short sales of securities, can generate “shadow risk premiums” and, thus, provide further incentives for firms to reduce the cost of capital by diversifying their securities.

  5. 5.

    The identification of the simultaneous equation system can be found in Appendix 2.

  6. 6.

    s ij is the ith row and jth column of the variance-covariance matrix of return. a i and b i are the supply adjustment cost of firm i and overall cost of capital of firm i, respectively.

  7. 7.

    The results are similar when using either the FIML or SUR approach. We report here the estimates of the SUR method.

References

  • Amemiya, T. (1974). A note on a Fair and Jaffee model. Econometrica, 42, 759–762.

    Article  Google Scholar 

  • Black, S. W. (1976). Rational response to shocks in a dynamic model of capital asset pricing. American Economic Review, 66, 767–779.

    Google Scholar 

  • Breeden, D. T. (1979). An intertemporal asset pricing model with stochastic consumption and investment opportunities. Journal of Financial Economics, 7, 265–196.

    Article  Google Scholar 

  • Campbell, J. Y., Grossman, S. J., & Wang, J. (1993). Trading volume and serial correlation in stock returns. Quarterly Journal of Economics, 108, 905–939.

    Article  Google Scholar 

  • Cox, J. C., Jr. Ingersoll, J. E., & Ross, S. A. (1985). An intertemporal general equilibrium model of asset prices. Econometrica, 53, 363–384.

    Article  Google Scholar 

  • Fair, R. C., & Jaffee, D. M. (1972). Methods of estimation of market in disequilibrium. Econometrica, 40, 497–514.

    Article  Google Scholar 

  • Fama, E., & French, K. R. (1992). The cross-section of expected stock return. Journal of Finance, 47, 427–465.

    Article  Google Scholar 

  • Greene, W. H. (2004). Econometric analysis (4th ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Grinols, E. L. (1984). Production and risk leveling in the intertemporal capital asset pricing model. The Journal of Finance, 39(5), 1571–1595.

    Article  Google Scholar 

  • Hamilton, J. D. (1994). Time series analysis. Princeton: Princeton University Press.

    Google Scholar 

  • Lee, C. F., & Gweon, S. C. (1986). Rational expectation, supply effect and stock price adjustment. Paper presented at 1986, Econometrica Society Annual Meeting.

    Google Scholar 

  • Lintner, J. (1965). The valuation of risky assets and the selection of risky investments in stock portfolios and capital budgets. Review of Economics and Statistics, 47, 13–37.

    Article  Google Scholar 

  • Lo, A. W., & Wang, J. (2000). Trading volume: Definition, data analysis, and implications of portfolio theory. Review of Financial Studies, 13, 257–300.

    Article  Google Scholar 

  • Markowitz, H. (1959). Portfolio selection: Efficient diversification of investments. New York: Wiley.

    Google Scholar 

  • Merton, R. C. (1973). An intertemporal capital assets pricing model. Econometrica, 41, 867–887.

    Article  Google Scholar 

  • Miller, M. H. (1977). Debt and taxes. Journal of Finance, 32(2), 261–275.

    Google Scholar 

  • Modigliani, F., & Miller, M. (1958). The cost of capital, corporation finance and the theory of investment. American Economic Review, 48, 261–297.

    Google Scholar 

  • Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica, 35, 768–783.

    Article  Google Scholar 

  • Quandt, R. E. (1988). The econometrics of disequilibrium. New York: Basil Blackwell.

    Google Scholar 

  • Sharpe, W. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance, 19, 425–442.

    Google Scholar 

  • Tobin, J. (1958). Liquidity preferences as behavior toward risk. Review of Economic Studies, 25, 65–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Few Lee .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Modeling the Price Process

In Sect. 93.2.3, Eq. 93.16 is derived from Eq. 93.15 under the assumption that all countries’ index series follow a random walk process. Thus, before further discussion, we should test the order of integration of these price series. From Hamilton (1994), we know that two widely used unit root tests are the Dickey-Fuller (DF) and the augmented Dickey-Fuller (ADF) tests. The former can be represented as P t = μ + γP t−1 + ε t , and the latter can be written as ΔP t = μ + γ P t−1 + δ 1ΔP t−1 + δ 2ΔP t−2 + … + δ p ΔP t−p + ε t .

Similarly, in the US stock markets, the Phillips-Perron test is used to check whether the value-weighted price of market portfolio follows a random walk process. The results of the tests for each index are summarized in Table 93.7. It seems that one cannot reject the hypothesis that all indices follow a random walk process since, for example, the null hypothesis of unit root in level cannot be rejected for all indices but are all rejected if one assumes there is a unit root in the first-order difference of the price for each portfolio. This result is consistent with most studies that find that the financial price series follow a random walk process.

Table 93.7 Unit root tests for Pt

Appendix 2: Identification of the Simultaneous Equation System

Note that given G is nonsingular, Π = −G−1 H in Eq. 93.19 can be written as

$$ \begin{array}{l}\mathrm{where}\ \mathrm{A}=\left[\begin{array}{cc} \mathrm{G} & \mathrm{H} \end{array}\right]=\left(\begin{array}{cccccccc} {\mathrm{g}}_{11} & {\mathrm{g}}_{12} & \dots \dots & \hfill {\mathrm{g}}_{1\mathrm{n}} & {\mathrm{h}}_{11} & {\mathrm{h}}_{12} & \dots \dots & {\mathrm{h}}_{1\mathrm{n}} \\ {} {\mathrm{g}}_{21} & {\mathrm{g}}_{22} & \dots \dots & {\mathrm{g}}_{1\mathrm{n}} & {\mathrm{h}}_{21} & {\mathrm{h}}_{22} & \dots \dots & {\mathrm{h}}_{2\mathrm{n}} \\ {}. & & & & & &. & \\ {}. & & & & & &. & \\ {} {\mathrm{g}}_{\mathrm{n}1} & {\mathrm{g}}_{\mathrm{n}2} & \dots \dots & {\mathrm{g}}_{\mathrm{n}\mathrm{n}} & {\mathrm{h}}_{\mathrm{n}1} & {\mathrm{h}}_{\mathrm{n}2} & \dots \dots & {\mathrm{h}}_{\mathrm{n}\mathrm{n}} \end{array}\right)\\ {}\kern1.68em \mathrm{W}=\left[\begin{array}{cc} \Pi & {\mathrm{I}}_{\mathrm{n}} \end{array}\right]\hbox{'}=\left(\begin{array}{cccccccc} {\pi}_{11} & {\pi}_{12} & \dots & {\pi}_{1\mathrm{n}} & 1 & 0 & \dots \dots & 0 \\ {} {\pi}_{21} & {\pi}_{22} & \dots & {\pi}_{1\mathrm{n}} & 0 & 1 & \dots \dots & 0 \\ {}. & & & & & &. & \\ {}. & & & & & &. & \\ {} {\pi}_{\mathrm{n}1} & {\pi}_{\mathrm{n}2} & \dots & {\pi}_{\mathrm{n}\mathrm{n}} & 0 & 0 & \dots \dots & 1 \end{array}\right)\end{array} $$
(93.24)

That is, A is the matrix of all structure coefficients in the model with dimension of (n × 2n), and W is a (2n × n) matrix. The first equation in Eq. (93.24) can be expressed as

$$ {\mathrm{A}}_1\mathrm{W}=0, $$
(93.25)

where A1 is the first row of A, i.e., A1 = [g11 g12 …. g1n h11 h12 ….. h1n].

Since the elements of Π can be consistently estimated, and In is the identity matrix, Eq. 93.25 contains 2n unknowns in terms of πs. Thus, there should be n restrictions on the parameters to solve Eq. 93.25 uniquely. First, one can try to impose normalization rule by setting g11 equal to 1 to reduce one restriction. As a result, there are at least n−1 independent restrictions needed in order to solve Eq. 93.25.

It can be illustrated that the system represented by Eq. 93.17 is exactly identified with three endogenous and three exogenous variables. It is entirely similar to those cases of more variables. For example, if n = 3, Eq. 93.17 can be expressed in the form

$$ \begin{array}{l}-\kern0.36em \left(\begin{array}{ccc}\hfill \mathrm{r}*\mathrm{c}{\mathrm{s}}_{11}+{\mathrm{a}}_1{\mathrm{b}}_1\hfill & \hfill \mathrm{r}*\mathrm{c}{\mathrm{s}}_{12}\hfill & \hfill \mathrm{r}*\mathrm{c}{\mathrm{s}}_{13}\hfill \\ {}\hfill \mathrm{r}*\mathrm{c}{\mathrm{s}}_{21}\hfill & \hfill \mathrm{r}*\mathrm{c}{\mathrm{s}}_{22}+{\mathrm{a}}_2{\mathrm{b}}_2\hfill & \hfill \mathrm{r}*\mathrm{c}{\mathrm{s}}_{23}\hfill \\ {}\hfill \mathrm{r}*\mathrm{c}{\mathrm{s}}_{31}\hfill & \hfill \mathrm{r}*\mathrm{c}{\mathrm{s}}_{32}\hfill & \hfill \mathrm{r}*\mathrm{c}{\mathrm{s}}_{33}+{\mathrm{a}}_3{\mathrm{b}}_3\hfill \end{array}\right)\left(\begin{array}{c}\hfill {\mathrm{p}}_{1\mathrm{t}}\hfill \\ {}\hfill {\mathrm{p}}_{2\mathrm{t}}\hfill \\ {}\hfill {\mathrm{p}}_{3\mathrm{t}}\hfill \end{array}\right)\\ {}\kern2.16em +\kern0.36em \left(\begin{array}{ccc}\hfill \mathrm{c}{\mathrm{s}}_{11}+{\mathrm{a}}_1\hfill & \hfill \mathrm{c}{\mathrm{s}}_{12}\hfill & \hfill \mathrm{c}{\mathrm{s}}_{13}\hfill \\ {}\hfill \mathrm{c}{\mathrm{s}}_{21}\hfill & \hfill \mathrm{c}{\mathrm{s}}_{22}+{\mathrm{a}}_2\hfill & \hfill \mathrm{c}{\mathrm{s}}_{23}\hfill \\ {}\hfill \mathrm{c}{\mathrm{s}}_{31}\hfill & \hfill \mathrm{c}{\mathrm{s}}_{32}\hfill & \hfill \mathrm{c}{\mathrm{s}}_{33}+{\mathrm{a}}_3\hfill \end{array}\right)\left(\begin{array}{c}\hfill {\mathrm{d}}_{1\mathrm{t}}\hfill \\ {}\hfill {\mathrm{d}}_{2\mathrm{t}}\hfill \\ {}\hfill {\mathrm{d}}_{3\mathrm{t}}\hfill \end{array}\right)=\left(\begin{array}{c}\hfill {\mathrm{v}}_{1\mathrm{t}}\hfill \\ {}\hfill {\mathrm{v}}_{2\mathrm{t}}\hfill \\ {}\hfill {\mathrm{v}}_{3\mathrm{t}}\hfill \end{array}\right)\end{array} $$
(93.26)

where

  • r* = scalar of risk-free rate

  • sij = elements of variance-covariance matrix of return

  • ai = inverse of the supply adjustment cost of firm i

  • bi = overall cost of capital of firm i

For example, in the case of n = 3, Eq. 93.17 can be written as

$$ \left(\begin{array}{l}{\mathrm{g}}_{11}\kern0.5em {\mathrm{g}}_{12}\kern0.5em {\mathrm{g}}_{13}\\ {}{\mathrm{g}}_{21}\kern0.5em {\mathrm{g}}_{22}\kern0.5em {\mathrm{g}}_{23}\\ {}{\mathrm{g}}_{31}\kern0.5em {\mathrm{g}}_{32}\kern0.5em {\mathrm{g}}_{33}\end{array}\right)\left(\begin{array}{l}{\mathrm{p}}_{1\mathrm{t}}\\ {}{\mathrm{p}}_{2\mathrm{t}}\\ {}{\mathrm{p}}_{3\mathrm{t}}\end{array}\right)+\left(\begin{array}{l}{\mathrm{h}}_{11}\kern0.5em {\mathrm{h}}_{12}\kern0.5em {\mathrm{h}}_{13}\\ {}{\mathrm{h}}_{21}\kern0.5em {\mathrm{h}}_{22}\kern0.5em {\mathrm{h}}_{23}\\ {}{\mathrm{h}}_{31}\kern0.5em {\mathrm{h}}_{32}\kern0.5em {\mathrm{h}}_{33}\end{array}\right)\left(\begin{array}{l}{\mathrm{d}}_{1\mathrm{t}}\\ {}{\mathrm{d}}_{2\mathrm{t}}\\ {}{\mathrm{d}}_{3\mathrm{t}}\end{array}\right)=\left(\begin{array}{l}{\mathrm{v}}_{1\mathrm{t}}\\ {}{\mathrm{v}}_{2\mathrm{t}}\\ {}{\mathrm{v}}_{3\mathrm{t}}\end{array}\right). $$
(93.27)

Comparing Eq. 93.26 with Eq. 93.27, the prior restrictions on the first equation take the form g12 = −r*h12 and g13 = −r*h13 and so on.

Thus, the restriction matrix for the first equation is of the form

$$ \Phi =\left(\begin{array}{cccccc}\hfill 0\hfill & \hfill 1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {\mathrm{r}}^{*}\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {\mathrm{r}}^{*}\hfill \end{array}\right) $$
(93.28)

Then, combining Eq. 93.25 and the parameters of the first equation gives

$$ \begin{array}{ccc}\hfill \left[\begin{array}{cccccc}\hfill {\mathrm{g}}_{11\ }\hfill & \hfill {\mathrm{g}}_{12}\hfill & \hfill {\mathrm{g}}_{13}\hfill & \hfill {\mathrm{h}}_{11\ }\hfill & \hfill {\mathrm{h}}_{12\ }\hfill & \hfill {\mathrm{h}}_{13}\hfill \end{array}\right]\hfill & \hfill \left(\begin{array}{ccccc}\hfill {\uppi}_{11}\hfill & \hfill {\uppi}_{12}\hfill & \hfill {\uppi}_{13}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill {\uppi}_{21}\hfill & \hfill {\uppi}_{22}\hfill & \hfill {\uppi}_{13}\hfill & \hfill 1\hfill & \hfill 0\hfill \\ {}\hfill {\uppi}_{31}\hfill & \hfill {\uppi}_{32}\hfill & \hfill {\uppi}_{33}\hfill & \hfill 0\hfill & \hfill 1\hfill \\ {}\hfill 1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 1\hfill & \hfill 0\hfill & \hfill \mathrm{r}*\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 1\hfill & \hfill 0\hfill & \hfill \mathrm{r}*\hfill \end{array}\right)\hfill & \hfill \left[\begin{array}{ccccc}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \end{array}\right]\hfill \end{array}. $$
(93.29)

That is, extending Eq. 93.29, we have

$$ \begin{array}{l}{\mathrm{g}}_{11}{\pi}_{11}+{\mathrm{g}}_{12}{\pi}_{21}+{\mathrm{g}}_{13}{\pi}_{31}+{\mathrm{h}}_{11}=0,\\ {}{\mathrm{g}}_{11}{\pi}_{12}+{\mathrm{g}}_{12}{\pi}_{22}+{\mathrm{g}}_{13}{\pi}_{32}+{\mathrm{h}}_{12}=0,\\ {}{\mathrm{g}}_{11}{\pi}_{13}+{\mathrm{g}}_{12}{\pi}_{23}+{\mathrm{g}}_{13}{\pi}_{33}+{\mathrm{h}}_{13}=0,\\ {}{\mathrm{g}}_{12}+{\mathrm{r}}^{*}{\mathrm{h}}_{12}=0,\mathrm{and}\\ {}{\mathrm{g}}_{13}+{\mathrm{r}}^{*}{\mathrm{h}}_{13}=0.\end{array} $$
(93.30)

The last two (n−1 = 3−1 = 2) equations in Eq. 93.30 give the value h12 and h13, and the normalization condition, g11 = 1, allows us to solve Eq. 93.25 in terms of πs uniquely. That is, in the case n = 3, the first equation represented by Eq. 93.25, A1W = 0, can be finally rewritten as Eq. 93.30. Since there are three unknowns, g12, g13, and h11, left for the first three equations in Eq. 93.30, the first equation A1 is exactly identified. Similarly, it can be shown that the second and the third equations are also exactly identified.

Appendix 3: Derivation of the Formula Used to Estimate dt

To derive the formula for estimating dt, we first define the partial adjustment model as

$$ {D}_t={a}_1+{a}_2{D}_{t-1}+{a}_3{E}_t+{u}_t $$
(93.31)

where D t = dividend per share in period t, D t−1 = dividend per share in period t−1, E t = earnings per share in period t are dividends and earnings, and ut = error term in period t. Similarly,

$$ {D}_{t+1}={a}_1+{a}_2{D}_{\mathrm{t}}+{a}_3{E}_{t+1}+{u}_{t+1}. $$
(93.31′)

And thus,

$$ {\mathrm{E}}_{t-1}\left[{D}_t\right]={a}_1+{a}_2{D}_{t-1}+{a}_3{\mathrm{E}}_{t-1}\left[{E}_t\right], $$
(93.32)
$$ {\mathrm{E}}_t\left[{D}_{t+1}\right]={a}_1+{a}_2{D}_t+{a}_3{\mathrm{E}}_t\left[{E}_{t+1}\right], $$
(93.33)
$$ {\mathrm{E}}_{t-1}\left[{D}_{t+1}\right]={a}_1+{a}_2{\mathrm{E}}_{t-1}\left[{D}_t\right]+{a}_3{\mathrm{E}}_{t-1}\left[{E}_{t+1}\right]. $$
(93.34)

Substituting Eq. 93.32 to Eq. 93.34, we have

$$ {E}_{t-1}\left[{D}_{t+1}\right]={a}_1+{a}_1{a}_2+{a}_2^2{D}_{t-1}+{a}_2{a}_3{\mathrm{E}}_{t-1}\left[{E}_t\right]+{a}_3{\mathrm{E}}_{t-1}\left[{E}_{t+1}\right]. $$
(93.34′)

Subtracting Eq. 93.34′ from Eq. 93.33 on both hand sides, we have

$$ {\mathrm{E}}_t\left[{D}_{t+1}\right]-{\mathrm{E}}_{t-1}\left[{D}_{t+1}\right]=-{a}_1{a}_2+{a}_2{D}_t-{a}_2^2{D}_{t-1}-{a}_2{a}_3{\mathrm{E}}_{t-1}\left[{E}_t\right]+{a}_3{\mathrm{E}}_t\left[{E}_{t+1}\right]-{a}_3{\mathrm{E}}_{t-1}\left[{E}_{t+1}\right]. $$
(93.35)

Equation Eq. 93.35 can be investigated depending upon whether Et is following a random walk.

Case 1

Et follows an AR(p) process.

If the time series of E t is assumed to be stationary and follows an AR(p) process, then after taking the seasonal differences, we obtain

$$ d{E}_t={\rho}_0+{\rho}_1d{E}_{t-1}+{\rho}_2d{E}_{t-2}+{\rho}_3d{E}_{t-3}+{\rho}_4d{E}_{t-4}+{\varepsilon}_t, $$
(93.36)

where dE t = E t E t−4.

The expectation adjustment in seasonally differenced earnings, or the revision in forecasting future seasonally differenced earnings, can be solved as

$$ {\mathrm{E}}_t\left[d{E}_{t+1}\right]-{\mathrm{E}}_{t-1}\left[d{E}_{t+1}\right]={\rho}_1\left(-{\rho}_0+d{E}_t-{\rho}_1d{E}_{t-1}-{\rho}_2d{E}_{t-2}-{\rho}_3d{E}_{t-3}-{\rho}_4d{E}_{t-4}\right). $$
(93.37)

Since t [dE t+1] − t−1[dE t+1] = t [E t+1] − t−1[E t+1], we have

$$ {}_t\left[{E}_{t+1}\right]-{}_{t-1}\left[{E}_{t+1}\right]={\rho}_1\left(-{\rho}_0+d{E}_t-{\rho}_1d{E}_{t-1}-{\rho}_2d{E}_{t-2}-{\rho}_3d{E}_{t-3}-{\rho}_4d{E}_{t-4}\right). $$
(93.38)

Furthermore, from Eq. 93.36, we have

$$ {}_{t-1}\left[d{E}_t\right]={\rho}_0+{\rho}_1d{E}_{t-1}+{\rho}_2d{E}_{t-2}+{\rho}_3d{E}_{t-3}+{\rho}_4d{E}_{t-4}. $$
(93.39)

Similarly, t−1[dE t ] = t−1[E 1E t−4] = t−1[E t ] − E t−4; thus, t−1[E t ] can be found by

$$ {}_{t-1}\left[{E}_t\right]={\rho}_0+{\rho}_1\left(d{E}_{t-1}\right)+{\rho}_2\left(d{E}_{t-2}\right)+{\rho}_3\left(d{E}_{t-3}\right)+{\rho}_4\left(d{E}_{t-4}\right)+{E}_{t-4}. $$
(93.40)

Finally, the expectation adjustment in dividends, d t , can be found by plugging Eqs. 93.38 and 93.40 into Eq. 93.35:

$$ \begin{array}{c}{d}_t\equiv {}_t\left[{D}_{t+1}\right]-{}_{t-1}\left[{D}_{t+1}\right]=-{a}_1{a}_2+{a}_2{D}_t-{a}_2^2{D}_{t-1}\\ {}-{a}_2{a}_3\left({\rho}_0+{\rho}_1d{E}_{t-1}+{\rho}_2d{E}_{t-2}+{\rho}_3d{E}_{t-3}+{\rho}_4d{E}_{t-4}+{E}_{t-4}\right)\\ {}+{a}_3{\rho}_1\left(-{\rho}_0+d{E}_t-{\rho}_1d{E}_{t-1}-{\rho}_2d{E}_{t-2}-{\rho}_3d{E}_{t-3}-{\rho}_4d{E}_{t-4}\right)\end{array} $$
(93.41)

Or

$$ {d}_t={C}_0+{C}_1{D}_t+{C}_2{D}_{t-1}+{C}_3d{E}_t+{C}_4d{E}_{t-1}+{C}_5d{E}_{t-2}+{C}_6d{E}_{t-3}+{C}_7d{E}_{t-4}+{C}_8{E}_{t-4} $$
(93.42)

where C 0 to C 8 are functions of a 1 to a 1 and ρ 0 to ρ 4.

That is, the expectation adjustment in dividends, d t , can be found by the coefficients estimated in Eqs. 93.31 and 93.36, i.e., a 1 to a 3 and ρ 0 to ρ 4, and the observable data from the time series of D t and E t .

Case 2

E t follows a random walk process.

If the series of earnings, E t , follows a random walk process, i.e., t [E t+1] = E t , t−1[E t ] = E t−1, and t−1[E t+1] = E t−1, then Eq. 93.35 can be redefined:

$$ {d}_t\equiv {}_t\left[{D}_{t+1}\right]-{}_{t-1}\left[{D}_{t+1}\right]={C}_0+{C}_1{D}_t+{C}_2{D}_{t-1}+{C}_3{E}_t+{C}_4{E}_{t-1} $$
(93.43)

where C 0 =a 1 a 2 C 1 = a 2, C 2 = − a 22 , C 3 = a 3, and C 4 = − a 3(1 + a 2).

That is, the expectation adjustment in dividends, d t , can be found by the observable data from the time series of D t and E t .

In this study, we assumed that E t follows a random walk process. Therefore, we used Eq. 93.43 instead of Eq. 93.42 to estimate d t in Eqs. 93.22 and 93.23 in the text.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Lee, CF., Tsai, CM., Lee, A.C. (2015). A Dynamic CAPM with Supply Effect Theory and Empirical Results. In: Lee, CF., Lee, J. (eds) Handbook of Financial Econometrics and Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7750-1_93

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7750-1_93

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7749-5

  • Online ISBN: 978-1-4614-7750-1

  • eBook Packages: Business and Economics

Publish with us

Policies and ethics