Skip to main content

Generation of Anterior Foregut Derivatives from Pluripotent Stem Cells

  • Chapter
  • First Online:
Stem Cells Handbook

Abstract

Directed differentiation of human pluripotent stem cells is a promising avenue to generate mature cell types for disease modeling, drug screening, and application in regenerative medicine. While efforts at specification and induction of several endodermal, mesodermal, and ectodermal lineages have resulted in significant progress, the derivation of anterior foregut endoderm, the most proximal section of the endoderm, has been challenging. However, several clinically important organs, including parathyroids, thymus, thyroid, and the respiratory system, are derived from the anterior foregut endoderm. Recently, important advances have been reported in the specification of anterior foregut endoderm from pluripotent stem cells. The subsequent differentiation of these cells into more mature tissues remains difficult; however, as developmental mechanisms underlying specification of several organs, domains in the anterior foregut endoderm, such as that of the thymus, are still unclear. We now review the development of anterior foregut-derived organs and recent progress in directed differentiation of anterior foregut endoderm and derived organs and tissues from pluripotent stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 2008;132(4):661–80.

    Article  PubMed  CAS  Google Scholar 

  2. Hanna JH, Saha K, Jaenisch R. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell. 2010; 143(4):508–25.

    Article  PubMed  CAS  Google Scholar 

  3. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  PubMed  CAS  Google Scholar 

  4. Yamanaka S. A fresh look at iPS cells. Cell. 2009;137(1):13–7.

    Article  PubMed  CAS  Google Scholar 

  5. Okita K, Yamanaka S. Induced pluripotent stem cells: opportunities and challenges. Philos Trans R Soc Lond B Biol Sci. 2011; 366(1575):2198–207.

    Article  PubMed  CAS  Google Scholar 

  6. Park IH, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;451(7175):141–6.

    Article  PubMed  CAS  Google Scholar 

  7. Yu J, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.

    Article  PubMed  CAS  Google Scholar 

  8. Okita K, Nagata N, Yamanaka S. Immunogenicity of induced pluripotent stem cells. Circ Res. 2011;109(7):720–1.

    Article  PubMed  CAS  Google Scholar 

  9. D’Amour KA, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24(11):1392–401.

    Article  PubMed  CAS  Google Scholar 

  10. Nostro MC, Keller G. Generation of beta cells from human pluripotent stem cells: potential for regenerative medicine. Semin Cell Dev Biol. 2012;23(6):701–10.

    Article  PubMed  CAS  Google Scholar 

  11. Van Hoof D, D’Amour KA, German MS. Derivation of insulin-producing cells from human embryonic stem cells. Stem Cell Res. 2009;3(2–3):73–87.

    Article  PubMed  CAS  Google Scholar 

  12. Kroon E, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26(4):443–52.

    Article  PubMed  CAS  Google Scholar 

  13. Irion S, et al. Directed differentiation of pluripotent stem cells: from developmental biology to therapeutic applications. Cold Spring Harb Symp Quant Biol. 2008;73:101–10.

    Article  PubMed  CAS  Google Scholar 

  14. Gouon-Evans V, et al. BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol. 2006;24(11):1402–11.

    Article  PubMed  CAS  Google Scholar 

  15. Yang L, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature. 2008;453(7194):524–8.

    Article  PubMed  CAS  Google Scholar 

  16. Chambers SM, et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27(3):275–80.

    Article  PubMed  CAS  Google Scholar 

  17. Kriks S, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature. 2011;480(7378):547–51.

    PubMed  CAS  Google Scholar 

  18. Oshima K, et al. Mechanosensitive hair cell-like cells from embryonic and induced pluripotent stem cells. Cell. 2010;141(4): 704–16.

    Article  PubMed  CAS  Google Scholar 

  19. Wichterle H, et al. Directed differentiation of embryonic stem cells into motor neurons. Cell. 2002;110(3):385–97.

    Article  PubMed  CAS  Google Scholar 

  20. Spence JR, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 2011;470(7332): 105–9.

    Article  PubMed  CAS  Google Scholar 

  21. Trulock EP. Lung transplantation. Am J Respir Crit Care Med. 1997;155(3):789–818.

    Article  PubMed  CAS  Google Scholar 

  22. United States Cancer Statistics Working Group. United States cancer statistics: 1999–2007 incidence and mortality web-based report. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute; 2010.

    Google Scholar 

  23. Centers for Disease Control and Prevention CDC. Deaths from chronic obstructive pulmonary disease—United States, 2000–2005. MMWR Morb Mortal Wkly Rep. 2008;57(45):1229–32.

    Google Scholar 

  24. Lewis DR, Clegg LX, Johnson NJ. Lung disease mortality in the United States: the National Longitudinal Mortality Study. Int J Tuberc Lung Dis. 2009;13(8):1008–14.

    PubMed  CAS  Google Scholar 

  25. Minino AM, et al. Deaths: final data for 2004. Natl Vital Stat Rep. 2007;55(19):1–119.

    PubMed  Google Scholar 

  26. Lung stem cells: looking beyond the hype. Nat Med. 2011;17(7): 788–9.

    Google Scholar 

  27. Anversa P, et al. Tissue-specific adult stem cells in the human lung. Nat Med. 2011;17(9):1038–9.

    Article  PubMed  CAS  Google Scholar 

  28. Kajstura J, et al. Evidence for human lung stem cells. N Engl J Med. 2011;364(19):1795–806.

    Article  PubMed  CAS  Google Scholar 

  29. Rock JR, Hogan BL. Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu Rev Cell Dev Biol. 2011;27:493–512.

    Article  PubMed  CAS  Google Scholar 

  30. Morrisey EE, Hogan BL. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell. 2010; 18(1):8–23.

    Article  PubMed  CAS  Google Scholar 

  31. Maeda Y, Dave V, Whitsett JA. Transcriptional control of lung morphogenesis. Physiol Rev. 2007;87(1):219–44.

    Article  PubMed  CAS  Google Scholar 

  32. Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2008;295(3): L379–99.

    Article  PubMed  CAS  Google Scholar 

  33. Song JJ, Ott HC. Bioartificial lung engineering. Am J Transplant. 2012;12(2):283–8.

    Article  PubMed  CAS  Google Scholar 

  34. Ott HC, et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med. 2010;16(8):927–33.

    Article  PubMed  CAS  Google Scholar 

  35. Petersen TH, et al. Tissue-engineered lungs for in vivo implantation. Science. 2010;329(5991):538–41.

    Article  PubMed  CAS  Google Scholar 

  36. Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature. 2012;481(7381): 295–305.

    Article  PubMed  CAS  Google Scholar 

  37. Unternaehrer JJ, Daley GQ. Induced pluripotent stem cells for modelling human diseases. Philos Trans R Soc Lond B Biol Sci. 2011;366(1575):2274–85.

    Article  PubMed  CAS  Google Scholar 

  38. Inoue H, Yamanaka S. The use of induced pluripotent stem cells in drug development. Clin Pharmacol Ther. 2011;89(5):655–61.

    Article  PubMed  CAS  Google Scholar 

  39. Ladi E, et al. Thymic microenvironments for T cell differentiation and selection. Nat Immunol. 2006;7(4):338–43.

    Article  PubMed  CAS  Google Scholar 

  40. Bhandoola A, Sambandam A. From stem cell to T cell: one route or many? Nat Rev Immunol. 2006;6(2):117–26.

    Article  PubMed  CAS  Google Scholar 

  41. Rodewald HR. Thymus organogenesis. Annu Rev Immunol. 2008;26:355–88.

    Article  PubMed  CAS  Google Scholar 

  42. Gordon J, Manley NR. Mechanisms of thymus organogenesis and morphogenesis. Development. 2011;138(18):3865–78.

    Article  PubMed  CAS  Google Scholar 

  43. Manley NR, Condie BG. Transcriptional regulation of thymus organogenesis and thymic epithelial cell differentiation. Prog Mol Biol Transl Sci. 2010;92:103–20.

    Article  PubMed  CAS  Google Scholar 

  44. Blackburn CC, Manley NR. Developing a new paradigm for thymus organogenesis. Nat Rev Immunol. 2004;4(4):278–89.

    Article  PubMed  CAS  Google Scholar 

  45. Watanabe N, et al. Hassall’s corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature. 2005;436(7054):1181–5.

    Article  PubMed  CAS  Google Scholar 

  46. Stefanova I, Dorfman JR, Germain RN. Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature. 2002;420(6914):429–34.

    Article  PubMed  CAS  Google Scholar 

  47. Sprent J, Surh CD. Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells. Nat Immunol. 2011;12(6):478–84.

    Article  PubMed  CAS  Google Scholar 

  48. Manz MG. Human-hemato-lymphoid-system mice: opportunities and challenges. Immunity. 2007;26(5):537–41.

    Article  PubMed  CAS  Google Scholar 

  49. Legrand N, Weijer K, Spits H. Experimental model for the study of the human immune system: production and monitoring of “human immune system” Rag2−/−gamma c−/− mice. Methods Mol Biol. 2008;415:65–82.

    PubMed  CAS  Google Scholar 

  50. Traggiai E, et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science. 2004; 304(5667):104–7.

    Article  PubMed  CAS  Google Scholar 

  51. Gimeno R, et al. Monitoring the effect of gene silencing by RNA interference in human CD34+ cells injected into newborn RAG2−/− gammac−/− mice: functional inactivation of p53 in developing T cells. Blood. 2004;104(13):3886–93.

    Article  PubMed  CAS  Google Scholar 

  52. Manz MG, Di Santo JP. Renaissance for mouse models of human hematopoiesis and immunobiology. Nat Immunol. 2009;10(10): 1039–42.

    Article  PubMed  CAS  Google Scholar 

  53. Legrand N, et al. Humanized mice for modeling human infectious disease: challenges, progress, and outlook. Cell Host Microbe. 2009;6(1):5–9.

    Article  PubMed  CAS  Google Scholar 

  54. Melkus MW, et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med. 2006;12(11):1316–22.

    Article  PubMed  CAS  Google Scholar 

  55. Lan P, et al. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood. 2006;108(2):487–92.

    Article  PubMed  CAS  Google Scholar 

  56. Onoe T, et al. Homeostatic expansion and phenotypic conversion of human T cells depend on peripheral interactions with APCs. J Immunol. 2010;184(12):6756–65.

    Article  PubMed  CAS  Google Scholar 

  57. Kalscheuer H, et al. A model for personalized in vivo analysis of human immune responsiveness. Sci Transl Med. 2012;4(125): 125ra30.

    Article  PubMed  Google Scholar 

  58. Zweier C, et al. Human TBX1 missense mutations cause gain of function resulting in the same phenotype as 22q11.2 deletions. Am J Hum Genet. 2007;80(3):510–7.

    Article  PubMed  CAS  Google Scholar 

  59. Frank J, et al. Exposing the human nude phenotype. Nature. 1999;398(6727):473–4.

    Article  PubMed  CAS  Google Scholar 

  60. Markert ML, et al. First use of thymus transplantation therapy for FOXN1 deficiency (nude/SCID): a report of 2 cases. Blood. 2011;117(2):688–96.

    Article  PubMed  CAS  Google Scholar 

  61. Sullivan KE. Chromosome 22q11.2 deletion syndrome: DiGeorge syndrome/velocardiofacial syndrome. Immunol Allergy Clin North Am. 2008;28(2):353–66.

    Article  PubMed  Google Scholar 

  62. Markert ML, et al. Transplantation of thymus tissue in complete DiGeorge syndrome. N Engl J Med. 1999;341(16):1180–9.

    Article  PubMed  CAS  Google Scholar 

  63. Markert ML, et al. Thymus transplantation in complete DiGeorge syndrome: immunologic and safety evaluations in 12 patients. Blood. 2003;102(3):1121–30.

    Article  PubMed  CAS  Google Scholar 

  64. Linton PJ, Dorshkind K. Age-related changes in lymphocyte development and function. Nat Immunol. 2004;5(2):133–9.

    Article  PubMed  CAS  Google Scholar 

  65. Shanker A. Is thymus redundant after adulthood? Immunol Lett. 2004;91(2–3):79–86.

    Article  PubMed  CAS  Google Scholar 

  66. Hirokawa K, Utsuyama M. The effect of sequential multiple grafting of syngeneic newborn thymus on the immune functions and life expectancy of aging mice. Mech Ageing Dev. 1984;28(1): 111–21.

    Article  PubMed  CAS  Google Scholar 

  67. Hirokawa K, Utsuyama M. Combined grafting of bone marrow and thymus, and sequential multiple thymus graftings in various strains of mice. The effect on immune functions and life span. Mech Ageing Dev. 1989;49(1):49–60.

    Article  PubMed  CAS  Google Scholar 

  68. Metcalf D. Multiple thymus grafts in aged mice. Nature. 1965; 208(5005):87–8.

    Article  PubMed  CAS  Google Scholar 

  69. van den Brink MR, Alpdogan O, Boyd RL. Strategies to enhance T-cell reconstitution in immunocompromised patients. Nat Rev Immunol. 2004;4(11):856–67.

    Article  PubMed  CAS  Google Scholar 

  70. Storek J, et al. Immunity of patients surviving 20 to 30 years after allogeneic or syngeneic bone marrow transplantation. Blood. 2001;98(13):3505–12.

    Article  PubMed  CAS  Google Scholar 

  71. Shlomchik WD. Graft-versus-host disease. Nat Rev Immunol. 2007;7(5):340–52.

    Article  PubMed  CAS  Google Scholar 

  72. Shoback D. Clinical practice. Hypoparathyroidism. N Engl J Med. 2008;359(4):391–403.

    Article  PubMed  CAS  Google Scholar 

  73. Grigorieva IV, et al. Gata3-deficient mice develop parathyroid abnormalities due to dysregulation of the parathyroid-specific transcription factor Gcm2. J Clin Invest. 2010;120(6):2144–55.

    Article  PubMed  CAS  Google Scholar 

  74. Potts JT. Parathyroid hormone: past and present. J Endocrinol. 2005;187(3):311–25.

    Article  PubMed  CAS  Google Scholar 

  75. Arlt W, et al. Well-being, mood and calcium homeostasis in patients with hypoparathyroidism receiving standard treatment with calcium and vitamin D. Eur J Endocrinol. 2002;146(2):215–22.

    Article  PubMed  CAS  Google Scholar 

  76. Chinn IK, et al. Mechanisms of tolerance to parental parathyroid tissue when combined with human allogeneic thymus transplantation. J Allergy Clin Immunol. 2010;126(4):814–820.e8.

    Article  PubMed  CAS  Google Scholar 

  77. Almandoz JP, Gharib H. Hypothyroidism: etiology, diagnosis, and management. Med Clin North Am. 2012;96(2):203–21.

    Article  PubMed  CAS  Google Scholar 

  78. Lin RY, Davies TF. Differentiating thyroid cells. Thyroid. 2010;20(1):1–2.

    Article  PubMed  Google Scholar 

  79. Cai J, et al. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology. 2007;45(5):1229–39.

    Article  PubMed  CAS  Google Scholar 

  80. van den Brink GR. Hedgehog signaling in development and homeostasis of the gastrointestinal tract. Physiol Rev. 2007; 87(4):1343–75.

    Article  PubMed  CAS  Google Scholar 

  81. Zorn AM, Wells JM. Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol. 2009;25:221–51.

    Article  PubMed  CAS  Google Scholar 

  82. Tam PP, Loebel DA. Gene function in mouse embryogenesis: get set for gastrulation. Nat Rev Genet. 2007;8(5):368–81.

    Article  PubMed  CAS  Google Scholar 

  83. Kubo A, et al. Development of definitive endoderm from embryonic stem cells in culture. Development. 2004;131(7):1651–62.

    Article  PubMed  CAS  Google Scholar 

  84. D’Amour KA, et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005;23(12): 1534–41.

    Article  PubMed  CAS  Google Scholar 

  85. Sherwood RI, Chen TY, Melton DA. Transcriptional dynamics of endodermal organ formation. Dev Dyn. 2009;238(1):29–42.

    Article  PubMed  CAS  Google Scholar 

  86. Dessimoz J, et al. FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo. Mech Dev. 2006;123(1):42–55.

    Article  PubMed  CAS  Google Scholar 

  87. McLin VA, Rankin SA, Zorn AM. Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development. 2007;134(12):2207–17.

    Article  PubMed  CAS  Google Scholar 

  88. Wells JM, Melton DA. Early mouse endoderm is patterned by soluble factors from adjacent germ layers. Development. 2000; 127(8):1563–72.

    PubMed  CAS  Google Scholar 

  89. Lawson KA, Pedersen RA. Cell fate, morphogenetic movement and population kinetics of embryonic endoderm at the time of germ layer formation in the mouse. Development. 1987;101(3): 627–52.

    PubMed  CAS  Google Scholar 

  90. Xu CR, et al. Chromatin “prepattern” and histone modifiers in a fate choice for liver and pancreas. Science. 2011;332(6032):963–6.

    Article  PubMed  CAS  Google Scholar 

  91. Graham A. Deconstructing the pharyngeal metamere. J Exp Zool B Mol Dev Evol. 2008;310(4):336–44.

    Article  PubMed  Google Scholar 

  92. Grevellec A, Tucker AS. The pharyngeal pouches and clefts: development, evolution, structure and derivatives. Semin Cell Dev Biol. 2010;21(3):325–32.

    Article  PubMed  Google Scholar 

  93. Manley NR, Capecchi MR. Hox group 3 paralogs regulate the development and migration of the thymus, thyroid, and parathyroid glands. Dev Biol. 1998;195(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  94. Muller TS, et al. Expression of avian Pax1 and Pax9 is intrinsically regulated in the pharyngeal endoderm, but depends on environmental influences in the paraxial mesoderm. Dev Biol. 1996;178(2):403–17.

    Article  PubMed  CAS  Google Scholar 

  95. Peters H, et al. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev. 1998;12(17):2735–47.

    Article  PubMed  CAS  Google Scholar 

  96. Su D, et al. Hoxa3 and pax1 regulate epithelial cell death and proliferation during thymus and parathyroid organogenesis. Dev Biol. 2001;236(2):316–29.

    Article  PubMed  CAS  Google Scholar 

  97. Wallin J, et al. Pax1 is expressed during development of the thymus epithelium and is required for normal T-cell maturation. Development. 1996;122(1):23–30.

    PubMed  CAS  Google Scholar 

  98. Zou D, et al. Patterning of the third pharyngeal pouch into thymus/parathyroid by Six and Eya1. Dev Biol. 2006;293(2):499–512.

    Article  PubMed  CAS  Google Scholar 

  99. Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet. 2001;27(3): 286–91.

    Article  PubMed  CAS  Google Scholar 

  100. Liao J, et al. Full spectrum of malformations in velo-cardio-facial syndrome/DiGeorge syndrome mouse models by altering Tbx1 dosage. Hum Mol Genet. 2004;13(15):1577–85.

    Article  PubMed  CAS  Google Scholar 

  101. Merscher S, et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell. 2001;104(4): 619–29.

    Article  PubMed  CAS  Google Scholar 

  102. Yagi H, et al. Role of TBX1 in human del22q11.2 syndrome. Lancet. 2003;362(9393):1366–73.

    Article  PubMed  CAS  Google Scholar 

  103. Gordon J, et al. Gcm2 and Foxn1 mark early parathyroid- and thymus-specific domains in the developing third pharyngeal pouch. Mech Dev. 2001;103(1–2):141–3.

    Article  PubMed  CAS  Google Scholar 

  104. Zajac JD, Danks JA. The development of the parathyroid gland: from fish to human. Curr Opin Nephrol Hypertens. 2008;17(4): 353–6.

    Article  PubMed  CAS  Google Scholar 

  105. Gordon J, et al. Evidence for an early role for BMP4 signaling in thymus and parathyroid morphogenesis. Dev Biol. 2010;339(1): 141–54.

    Article  PubMed  CAS  Google Scholar 

  106. Moore-Scott BA, Manley NR. Differential expression of Sonic hedgehog along the anterior-posterior axis regulates patterning of pharyngeal pouch endoderm and pharyngeal endoderm-derived organs. Dev Biol. 2005;278(2):323–35.

    Article  PubMed  CAS  Google Scholar 

  107. Patel SR, et al. Bmp4 and Noggin expression during early thymus and parathyroid organogenesis. Gene Expr Patterns. 2006;6(8): 794–9.

    Article  PubMed  CAS  Google Scholar 

  108. Frank DU, et al. An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome. Development. 2002;129(19):4591–603.

    PubMed  CAS  Google Scholar 

  109. Balciunaite G, et al. Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice. Nat Immunol. 2002;3(11): 1102–8.

    Article  PubMed  CAS  Google Scholar 

  110. Wei Q, Condie BG. A focused in situ hybridization screen identifies candidate transcriptional regulators of thymic epithelial cell development and function. PLoS One. 2011;6(11):e26795.

    Article  PubMed  CAS  Google Scholar 

  111. Zamisch M, et al. Ontogeny and regulation of IL-7-expressing thymic epithelial cells. J Immunol. 2005;174(1):60–7.

    PubMed  CAS  Google Scholar 

  112. Liu C, et al. Coordination between CCR7- and CCR9-mediated chemokine signals in prevascular fetal thymus colonization. Blood. 2006;108(8):2531–9.

    Article  PubMed  CAS  Google Scholar 

  113. Foster KE, et al. EphB-ephrin-B2 interactions are required for thymus migration during organogenesis. Proc Natl Acad Sci U S A. 2010;107(30):13414–9.

    Article  PubMed  CAS  Google Scholar 

  114. Griffith AV, et al. Increased thymus- and decreased parathyroid-fated organ domains in Splotch mutant embryos. Dev Biol. 2009; 327(1):216–27.

    Article  PubMed  CAS  Google Scholar 

  115. Muller SM, et al. Neural crest origin of perivascular mesenchyme in the adult thymus. J Immunol. 2008;180(8):5344–51.

    PubMed  Google Scholar 

  116. Liu C, et al. The role of CCL21 in recruitment of T-precursor cells to fetal thymi. Blood. 2005;105(1):31–9.

    Article  PubMed  CAS  Google Scholar 

  117. Rossi SW, et al. RANK signals from CD4(+)3(−) inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J Exp Med. 2007;204(6):1267–72.

    Article  PubMed  CAS  Google Scholar 

  118. Wu L, Shortman K. Heterogeneity of thymic dendritic cells. Semin Immunol. 2005;17(4):304–12.

    Article  PubMed  CAS  Google Scholar 

  119. Jenkinson WE, Jenkinson EJ, Anderson G. Differential requirement for mesenchyme in the proliferation and maturation of thymic epithelial progenitors. J Exp Med. 2003;198(2):325–32.

    Article  PubMed  CAS  Google Scholar 

  120. Revest JM, et al. Development of the thymus requires signaling through the fibroblast growth factor receptor R2-IIIb. J Immunol. 2001;167(4):1954–61.

    PubMed  CAS  Google Scholar 

  121. Kasahara H, et al. Cardiac and extracardiac expression of Csx/Nkx2.5 homeodomain protein. Circ Res. 1998;82(9):936–46.

    Article  PubMed  CAS  Google Scholar 

  122. Que J, et al. Multiple roles for Sox2 in the developing and adult mouse trachea. Development. 2009;136(11):1899–907.

    Article  PubMed  CAS  Google Scholar 

  123. Mahlapuu M, Enerback S, Carlsson P. Haploinsufficiency of the forkhead gene Foxf1, a target for sonic hedgehog signaling, causes lung and foregut malformations. Development. 2001;128(12): 2397–406.

    PubMed  CAS  Google Scholar 

  124. Goss AM, et al. Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell. 2009;17(2):290–8.

    Article  PubMed  CAS  Google Scholar 

  125. Bellusci S, et al. Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development. 1997;124(23):4867–78.

    PubMed  CAS  Google Scholar 

  126. Min H, et al. Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev. 1998;12(20):3156–61.

    Article  PubMed  CAS  Google Scholar 

  127. Serls AE, et al. Different thresholds of fibroblast growth factors pattern the ventral foregut into liver and lung. Development. 2005;132(1):35–47.

    Article  PubMed  CAS  Google Scholar 

  128. Sekine K, et al. Fgf10 is essential for limb and lung formation. Nat Genet. 1999;21(1):138–41.

    Article  PubMed  CAS  Google Scholar 

  129. Weaver M, et al. Bmp signaling regulates proximal-distal differentiation of endoderm in mouse lung development. Development. 1999;126(18):4005–15.

    PubMed  CAS  Google Scholar 

  130. Li Y, et al. Bmp4 is required for tracheal formation: a novel mouse model for tracheal agenesis. Dev Biol. 2008;322(1):145–55.

    Article  PubMed  CAS  Google Scholar 

  131. Domyan ET, et al. Signaling through BMP receptors promotes respiratory identity in the foregut via repression of Sox2. Development. 2011;138(5):971–81.

    Article  PubMed  CAS  Google Scholar 

  132. Rossant J, et al. Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev. 1991;5(8):1333–44.

    Article  PubMed  CAS  Google Scholar 

  133. Desai TJ, et al. Distinct roles for retinoic acid receptors alpha and beta in early lung morphogenesis. Dev Biol. 2006;291(1):12–24.

    Article  PubMed  CAS  Google Scholar 

  134. Desai TJ, et al. Retinoic acid selectively regulates Fgf10 expression and maintains cell identity in the prospective lung field of the developing foregut. Dev Biol. 2004;273(2):402–15.

    Article  PubMed  CAS  Google Scholar 

  135. Chen F, et al. A retinoic acid-dependent network in the foregut controls formation of the mouse lung primordium. J Clin Invest. 2010;120(6):2040–8.

    Article  PubMed  CAS  Google Scholar 

  136. Rawlins EL, et al. The Id2+ distal tip lung epithelium contains individual multipotent embryonic progenitor cells. Development. 2009;136(22):3741–5.

    Article  PubMed  CAS  Google Scholar 

  137. Warburton D, et al. Lung organogenesis. Curr Top Dev Biol. 2010;90:73–158.

    Article  PubMed  CAS  Google Scholar 

  138. Shu W, et al. Wnt/beta-catenin signaling acts upstream of N-myc, BMP4, and FGF signaling to regulate proximal-distal patterning in the lung. Dev Biol. 2005;283(1):226–39.

    Article  PubMed  CAS  Google Scholar 

  139. Li C, et al. Wnt5a participates in distal lung morphogenesis. Dev Biol. 2002;248(1):68–81.

    Article  PubMed  CAS  Google Scholar 

  140. Wongtrakool C, et al. Down-regulation of retinoic acid receptor alpha signaling is required for sacculation and type I cell formation in the developing lung. J Biol Chem. 2003;278(47):46911–8.

    Article  PubMed  CAS  Google Scholar 

  141. Tsao PN, et al. Gamma-secretase activation of notch signaling regulates the balance of proximal and distal fates in progenitor cells of the developing lung. J Biol Chem. 2008;283(43):29532–44.

    Article  PubMed  CAS  Google Scholar 

  142. Rock JR, et al. Notch-dependent differentiation of adult airway basal stem cells. Cell Stem Cell. 2011;8(6):639–48.

    Article  PubMed  CAS  Google Scholar 

  143. Tsao PN, et al. Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development. 2009;136(13):2297–307.

    Article  PubMed  CAS  Google Scholar 

  144. Fagman H, Nilsson M. Morphogenetics of early thyroid development. J Mol Endocrinol. 2011;46(1):R33–42.

    Article  PubMed  CAS  Google Scholar 

  145. Fagman H, et al. Genetic deletion of sonic hedgehog causes hemiagenesis and ectopic development of the thyroid in mouse. Am J Pathol. 2004;164(5):1865–72.

    Article  PubMed  CAS  Google Scholar 

  146. Postiglione MP, et al. Role of the thyroid-stimulating hormone receptor signaling in development and differentiation of the thyroid gland. Proc Natl Acad Sci U S A. 2002;99(24):15462–7.

    Article  PubMed  CAS  Google Scholar 

  147. Gadue P, et al. Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci U S A. 2006;103(45): 16806–11.

    Article  PubMed  CAS  Google Scholar 

  148. Yasunaga M, et al. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat Biotechnol. 2005;23(12):1542–50.

    Article  PubMed  CAS  Google Scholar 

  149. Borowiak M, et al. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell. 2009;4(4):348–58.

    Article  PubMed  CAS  Google Scholar 

  150. Nostro MC, et al. Stage-specific signaling through TGFbeta family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development. 2011;138(5):861–71.

    Article  PubMed  CAS  Google Scholar 

  151. Xu X, Browning VL, Odorico JS. Activin, BMP and FGF pathways cooperate to promote endoderm and pancreatic lineage cell differentiation from human embryonic stem cells. Mech Dev. 2011;128(7–10):412–27.

    Article  PubMed  CAS  Google Scholar 

  152. Ungrin MD, et al. Rational bioprocess design for human pluripotent stem cell expansion and endoderm differentiation based on cellular dynamics. Biotechnol Bioeng. 2012;109(4):853–66.

    Article  PubMed  CAS  Google Scholar 

  153. Green MD, et al. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat Biotechnol. 2011;29(3):267–72.

    Article  PubMed  CAS  Google Scholar 

  154. Watanabe K, et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 2007;25(6): 681–6.

    Article  PubMed  CAS  Google Scholar 

  155. Yamamoto M, et al. Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo. Nature. 2004; 428(6981):387–92.

    Article  PubMed  CAS  Google Scholar 

  156. Perea-Gomez A, et al. Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. Dev Cell. 2002;3(5):745–56.

    Article  PubMed  CAS  Google Scholar 

  157. del Barco Barrantes I, et al. Dkk1 and noggin cooperate in mammalian head induction. Genes Dev. 2003;17(18):2239–44.

    Article  PubMed  CAS  Google Scholar 

  158. Samadikuchaksaraei A, et al. Derivation of distal airway epithelium from human embryonic stem cells. Tissue Eng. 2006;12(4):867–75.

    Article  PubMed  CAS  Google Scholar 

  159. Qin M, et al. Cell extract-derived differentiation of embryonic stem cells. Stem Cells. 2005;23(6):712–8.

    Article  PubMed  CAS  Google Scholar 

  160. Van Vranken BE, et al. Coculture of embryonic stem cells with pulmonary mesenchyme: a microenvironment that promotes differentiation of pulmonary epithelium. Tissue Eng. 2005; 11(7–8):1177–87.

    Article  PubMed  Google Scholar 

  161. Van Haute L, et al. Generation of lung epithelial-like tissue from human embryonic stem cells. Respir Res. 2009;10:105.

    Article  PubMed  CAS  Google Scholar 

  162. Wang D, et al. A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A. 2007;104(11):4449–54.

    Article  PubMed  CAS  Google Scholar 

  163. Malpel S, Mendelsohn C, Cardoso WV. Regulation of retinoic acid signaling during lung morphogenesis. Development. 2000; 127(14):3057–67.

    PubMed  CAS  Google Scholar 

  164. Roberts C, et al. Retinoic acid down-regulates Tbx1 expression in vivo and in vitro. Dev Dyn. 2005;232(4):928–38.

    Article  PubMed  CAS  Google Scholar 

  165. Longmire TA, et al. Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell. 2012;10(4):398–411.

    Article  PubMed  CAS  Google Scholar 

  166. Mou H, et al. Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell. 2012;10(4):385–97.

    Article  PubMed  CAS  Google Scholar 

  167. Domyan ET, Sun X. Patterning and plasticity in development of the respiratory lineage. Dev Dyn. 2011;240(3):477–85.

    Article  PubMed  CAS  Google Scholar 

  168. Gonzales LW, et al. Differentiation of human pulmonary type II cells in vitro by glucocorticoid plus cAMP. Am J Physiol Lung Cell Mol Physiol. 2002;283(5):L940–51.

    PubMed  CAS  Google Scholar 

  169. McQualter JL, et al. Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci U S A. 2010;107(4):1414–9.

    Article  PubMed  CAS  Google Scholar 

  170. Rock JR, et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A. 2009;106(31): 12771–5.

    Article  PubMed  CAS  Google Scholar 

  171. Kim CF, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005;121(6):823–35.

    Article  PubMed  CAS  Google Scholar 

  172. Chapman HA, et al. Integrin alpha6beta4 identifies an adult distal lung epithelial population with regenerative potential in mice. J Clin Invest. 2011;121(7):2855–62.

    Article  PubMed  CAS  Google Scholar 

  173. Giangreco A, Reynolds SD, Stripp BR. Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol. 2002;161(1):173–82.

    Article  PubMed  Google Scholar 

  174. Hong KU, et al. Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol. 2001;24(6): 671–81.

    Article  PubMed  CAS  Google Scholar 

  175. Rawlins EL, et al. The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell. 2009;4(6):525–34.

    Article  PubMed  CAS  Google Scholar 

  176. Kumar PA, et al. Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell. 2011;147(3):525–38.

    Article  PubMed  CAS  Google Scholar 

  177. Gill J, et al. Generation of a complete thymic microenvironment by MTS24(+) thymic epithelial cells. Nat Immunol. 2002;3(7): 635–42.

    Article  PubMed  CAS  Google Scholar 

  178. Bennett AR, et al. Identification and characterization of thymic epithelial progenitor cells. Immunity. 2002;16(6):803–14.

    Article  PubMed  CAS  Google Scholar 

  179. Depreter MG, et al. Identification of Plet-1 as a specific marker of early thymic epithelial progenitor cells. Proc Natl Acad Sci U S A. 2008;105(3):961–6.

    Article  PubMed  CAS  Google Scholar 

  180. Rossi SW, et al. Redefining epithelial progenitor potential in the developing thymus. Eur J Immunol. 2007;37(9):2411–8.

    Article  PubMed  CAS  Google Scholar 

  181. Rossi SW, et al. Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature. 2006; 441(7096):988–91.

    Article  PubMed  CAS  Google Scholar 

  182. Lai L, Jin J. Generation of thymic epithelial cell progenitors by mouse embryonic stem cells. Stem Cells. 2009;27(12):3012–20.

    PubMed  CAS  Google Scholar 

  183. Lai L, et al. Mouse embryonic stem cell-derived thymic epithelial cell progenitors enhance T-cell reconstitution after allogeneic bone marrow transplantation. Blood. 2011;118(12):3410–8.

    Article  PubMed  CAS  Google Scholar 

  184. Hidaka K, et al. Differentiation of pharyngeal endoderm from mouse embryonic stem cell. Stem Cells Dev. 2010;19(11):1735–43.

    Article  PubMed  CAS  Google Scholar 

  185. Inami Y, et al. Differentiation of induced pluripotent stem cells to thymic epithelial cells by phenotype. Immunol Cell Biol. 2011; 89(2):314–21.

    Article  PubMed  Google Scholar 

  186. Bingham EL, et al. Differentiation of human embryonic stem cells to a parathyroid-like phenotype. Stem Cells Dev. 2009;18(7): 1071–80.

    Article  PubMed  CAS  Google Scholar 

  187. Woods Ignatoski KM, et al. Differentiation of precursors into parathyroid-like cells for treatment of hypoparathyroidism. Surgery. 2010;148(6):1186–9. discussion 1189–90.

    Article  PubMed  Google Scholar 

  188. Lin RY, et al. Committing embryonic stem cells to differentiate into thyrocyte-like cells in vitro. Endocrinology. 2003;144(6):2644–9.

    Article  PubMed  CAS  Google Scholar 

  189. Arufe MC, et al. Directed differentiation of mouse embryonic stem cells into thyroid follicular cells. Endocrinology. 2006; 147(6):3007–15.

    Article  PubMed  CAS  Google Scholar 

  190. Ma R, Latif R, Davies TF. Thyrotropin-independent induction of thyroid endoderm from embryonic stem cells by activin A. Endocrinology. 2009;150(4):1970–5.

    Article  PubMed  CAS  Google Scholar 

  191. Arufe MC, Lu M, Lin RY. Differentiation of murine embryonic stem cells to thyrocytes requires insulin and insulin-like growth factor-1. Biochem Biophys Res Commun. 2009;381(2):264–70.

    Article  PubMed  CAS  Google Scholar 

  192. Jiang N, et al. Differentiation of E14 mouse embryonic stem cells into thyrocytes in vitro. Thyroid. 2010;20(1):77–84.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Willem Snoeck M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science + Business Media New York

About this chapter

Cite this chapter

Snoeck, HW. (2013). Generation of Anterior Foregut Derivatives from Pluripotent Stem Cells. In: Sell, S. (eds) Stem Cells Handbook. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-7696-2_12

Download citation

Publish with us

Policies and ethics