Skip to main content

Evolution of Echolocation

  • Chapter
  • First Online:
Bat Evolution, Ecology, and Conservation

Abstract

Basic information about echolocation by bats includes aspects of signal design. Specifically the importance of timing, frequencies in the signals and patterns of frequency change over time are considered along with how bats use harmonics in echolocation signals. Also covered are aspects of signal strength and how bats adjust their echolocation behaviour in areas of clutter. The ways in which bats deal with forward masking (self-deafening) are considered along with differences in duty cycle (low duty cycle, separate pulse and echo in time; high duty cycle separate them in frequency). The importance of echolocation signals in communication also is covered. This information about echolocation is then presented in a phylogenetic context including a discussion of the origin of echolocation and its importance in the diversification of bats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acharya L, Fenton MB (1992) Echolocation behaviour of vespertilionid bats (Lasiurus cinereus and Lasiurus borealis) attacking airborne targets, including arctiid moths. Can J Zool 70:1292–1298

    Google Scholar 

  • Acharya L, Fenton MB (1999) Bat attacks and moth defensive behaviour around street lights. Can J Zool 77:27–33

    Google Scholar 

  • Aldridge HDNJ, Rautenbach IL (1987) Morphology, echolocation and resource partitioning in insectivorous bats. J Anim Ecol 56:763–778

    Google Scholar 

  • Barclay RMR (1982) Interindividual use of echolocation calls: eavesdropping by bats. Behav Ecol Sociobiol 10:271–275

    Google Scholar 

  • Bayefsky-Anand S, Skowronski MD, Fenton MB, Korine C, Holderied MW (2008) Variations in the echolocation calls of the European-Free-tailed Bat (Tadarida teniotis, Molossidae). J Zool 275:115–123

    Google Scholar 

  • Bell GP (1985) The sensory basis of prey location by the California leaf-nosed bat Macrotus californicus (Chiroptera: Phyllostomidae). Behav Ecol Sociobiol 16:343–347

    Google Scholar 

  • Brinklov S, Kalko EKV, Surylkke A (2009) Intense echolocation calls from two ‘whispering’ bats, Artibeus jamaicensis and Macrophyllum macrophyllum (Phyllostomidae). J Exp Biol 212:11–20

    PubMed  Google Scholar 

  • Brinklov S, Jakobsen L, Ratliffe JM, Surlykke A (2010a) Echolocation call intensity and directionality in flying short-tailed fruit bats, Carollia perspicillata (Phyllostomidae). J Acoust Soc Am 129:427–435

    Google Scholar 

  • Brinklov S, Kalko EKV, Surlykke A (2010b) Dynamic adjustment of biosonar intensity to habitat clutter in the bat Macrophyllum macrophyllum (Phyllostomidae). Behav Ecol Sociobiol 64:1867–1874

    Google Scholar 

  • Chadha M, Moss CF, Sterbing-D'Angelo SJ (2011) Organization of the primary somatosensory cortex and wing representation in the big brown bat, Eptesicus fuscus. J Comp Physiol A 197:89–96

    CAS  Google Scholar 

  • Chiu C, Xian W, Moss CF (2008) Flying in silence: echolocating bats cease vocalizing to avoid sonar jamming. Proc Natl Acad Sci USA 105:13116–13121

    PubMed  CAS  Google Scholar 

  • Chiu C, Xian W, Moss CF (2009) Adaptive echolocation behaviour in bats for the analysis of auditory scenes. J Exp Biol 212:1392–1404

    PubMed  Google Scholar 

  • Chiu C, Reddy PV, Xian W, Krishnaprasad PS, Moss CF (2010) Effects of competitive prey capture on flight behaviour and sonar beam pattern in paired big brown bats, Eptesicus fuscus. J Exp Biol 213:3348–3356

    PubMed  Google Scholar 

  • Clare E, Fraser E, Braid H, Fenton MB, Hebert P (2009) Unravelling complex food webs with simple molecules: a generalist predator the eastern red bat (Lasiurus borealis) and its arthropod prey. Mol Ecol 18:2532–2542. doi:10.1111/j.1365-294X.2009.04184.x

    PubMed  Google Scholar 

  • DeBaeremaeker KR, Fenton MB (2003) Basisphenoid and basioccipital pits in microchiropteran bats. Biol J Linn Soc 78:215–233

    Google Scholar 

  • Dell L-A, Kruger J-L, Bhagwandin A, Jillani N, Pettigrew JD, Manger PR (2010) Nuclear organization of cholinergic, putative catecholaminergic and serotonergic systems in the brains of two megachiropteran species. J Chem Neuroanat 40:177–195

    PubMed  CAS  Google Scholar 

  • Denny, M. 2006. Blip, ping & buzz: making sense of radar and sonar. Johns Hopkins Press, Baltimore

    PubMed  Google Scholar 

  • Denny M (2007) Blip, ping & buzz: making sense of radar and sonar. Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Eick GN, Jacobs DS, Matthee CA (2005) A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Mol Biol Evol 22:1869–1886

    PubMed  CAS  Google Scholar 

  • Fattu JM, Suthers RA (1981) Subglottic pressure and the control of phonation by the echolocating bat, Eptesicus. J Comp Physiol A143:465–475

    Google Scholar 

  • Faure PA, Barclary RMR (1994) Substrate-gleaning versus aerial-hawking: plasticity in the foraging and echolocation behaviour of the long-eared bat, Myotis evotis. J Comp Physiol A 174:651–660

    PubMed  CAS  Google Scholar 

  • Fenton MB, Fullard JH (1979) The influence of moth hearing on bat echolocation strategies. J Comp Physiol A 132:77–86

    Google Scholar 

  • Fenton MB, Audet D, Obrist MK, Rydell J (1995) Signal strength, timing and self-deafening: the evolution of echolocation in bats. Paleobiology 21:229–242

    Google Scholar 

  • Fenton MB, Skowronski MD, McGuire LP, Faure PA (2011) Variation in the use of harmonics in the calls of laryngeally echolocating bats. Acta Chiropterol 13:169–178

    Google Scholar 

  • Fenton MB, Faure PA, Ratcliffe JM (2012) Evolution of high duty cycle echolocation in bats. J Exp Biol 215:2935–2944

    PubMed  Google Scholar 

  • Galambos R, Griffin DR (1942) Obstacle avoidance by flying bats: the cries of bats. J Exp Zool 89:475–490

    Google Scholar 

  • Gillam EH, Ulanovsky N, McCracken GF (2007) Rapid jamming avoidance in biosonar. Proc Biol Sci B274:651–660

    Google Scholar 

  • Goerlitz HR, ter Hofstede HM, Zeale MRK, Jones G, Holderied MW (2010) An aerial hawking bat uses stealth echolocation to counter moth hearing. Curr Biol 20:1568–1572

    PubMed  CAS  Google Scholar 

  • Griffin DR (1958) Listening in the dark. Yale University Press, New Haven, CT

    Google Scholar 

  • Griffin DR, Galambos R (1941) The sensory basis of obstacle avoidance by flying bats. J Exp Zool 86:481–506

    Google Scholar 

  • Griffiths TA (1978) Modification of M. cricothyroideus and the larynx in the Mormoopidae, with reference to amplification of high-frequency pulses. J Mammal 59:724–730

    Google Scholar 

  • Hartley DJ, Suthers RA (1987) The sound emission pattern and the acoustical role of the noseleaf in the echolocating bat, Carollia perspicillata. J Acoust Soc Am 82:1900–1987

    Google Scholar 

  • Hartley DJ, Campbell KA, Suthers RA (1989) The acoustic behavior of the fish-catching bat, Noctilio leporinus, during prey capture. J Acoust Soc Am 86:8–27

    Google Scholar 

  • Hill JE, Smith JD (1984) Bats: a natural history. British Museum (Natural History), London

    Google Scholar 

  • Hiryu S, Bates ME, Simmons JA, Riquimaroux H (2010) FM broadcasting bats shift frequencies to avoid broadcast-echo ambiguity in clutter. Proc Natl Acad Sci USA 107:7048–7053. doi:10.1037/pnas.100429107, http://www.pnas.org/cgi

    PubMed  CAS  Google Scholar 

  • Holderied MW, von Helversen O (2003) Echolocation range and wing beat period match in aerial-hawking bats. Proc Biol Sci 270:2293–2299

    PubMed  CAS  Google Scholar 

  • Holderied MW, Korine C, Fenton MB, Parsons S, Robinson S, Jones G (2005) Echolocation call intensity in the aerial hawking bat Eptesicus bottae (Vespertilionidae) studied using stereo videogrammetry. J Exp Biol 208:1321–1327

    PubMed  Google Scholar 

  • Holland RA, Waters DA, Rayner JMV (2004) Echolocation signal structure in the megachiropteran bat Rousettus aegyptiacus Geoffroy 1810. J Exp Biol 207:4261–4369

    Google Scholar 

  • Hubner M, Weigrebe L (2003) The effect of temporal structure on rustling-sound detection in the gleaning bat, Megaderma lyra. J Comp Physiol A 189:337–346

    CAS  Google Scholar 

  • Jakobsen L, Surlykke A (2010) Vespertilionid bats control the width of their biosonar beam dynamically during prey pursuit. Proc Natl Acad Sci USA 107:13930–13935

    PubMed  CAS  Google Scholar 

  • Jen PH-S, Suga N (1977) Coordinated activities of middle-ear and laryngeal muscles in echolocating bats. Science 950–952

    Google Scholar 

  • Jepsen GL (1970) Bat origins and evolution. In: Wimsatt WA (ed) Biology of bats, vol 1. Academic, New York, pp 1–64

    Google Scholar 

  • Jones G, Holderied MW (2007) Bat echolocation calls: adaptation and convergent evolution. Proc Biol Sci B274:905–912

    Google Scholar 

  • Jones G, Teeling EC (2006) The evolution of echolocation in bats. TREE 21:149–156

    PubMed  Google Scholar 

  • Kalko EKV, Schnitzler H-U (1989) The echolocation and hunting behavior of Daubenton’s bat, Myotis daubentonii. Behav Ecol Sociobiol 24:225–238

    Google Scholar 

  • Kick SA (1982) Target-detection by the echolocating bat, Eptesicus fuscus. J Comp Physiol A145:431–435

    Google Scholar 

  • Kingston T, Rossiter SJ (2004) Harmonic-hopping in Wallacea's bats. Nature 429:654–657

    PubMed  CAS  Google Scholar 

  • Kruger J-L, Dell L-A, Bahgwandin A, Jillani NE, Pettigrew JD, Manger PR (2010) Nuclear organization of cholinergic, putative catecholaminergic and serotonergic systems in the brains of two microchiropteran species. J Chem Neuroanat 40:210–222

    PubMed  Google Scholar 

  • Lancaster WC, Speakman JR (2001) Variations in respiratory muscle activity during echolocation when stationary in three species of bat (Microchiroptera: Vespertilionidae). J Exp Biol 204:4185–4197

    PubMed  CAS  Google Scholar 

  • Lancaster WC, Henson OW Jr, Keating AW (1995) Respiratory muscle activity in relation to vocalization in flying bats. J Exp Biol 198:175–191

    PubMed  CAS  Google Scholar 

  • Lawrence BD, Simmons JA (1982a) Echolocation in bats: the external ear and perception of the vertical positions of targets. Science 218:481–483

    PubMed  CAS  Google Scholar 

  • Lawrence BD, Simmons JA (1982b) Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation by bats. J Acoust Soc Am 71:585–590

    PubMed  CAS  Google Scholar 

  • Lazure L, Fenton MB (2011) High duty cycle echolocation and prey detection by bats. J Exp Biol 214:1131–1137

    PubMed  Google Scholar 

  • Li G, Wang J, Rossiter SJ, Jones G, Zhang S (2007) Accelerated FoxP2 evolution in echolocating bats. PLoS One 9:e900

    Google Scholar 

  • Li G, Wang J, Rossiter SJ, Jones G, Zhang S (2008) The hearing gene Prestin reunites echolocating bats. Proc Natl Acad Sci USA 105:13959–13964

    PubMed  CAS  Google Scholar 

  • Maltby A, Jones KE, Jones G (2009) Understanding the evolutionary origin and diversification of bat echolocation calls. In: Brudzynski SM (ed) Handbook of mammalian vocalization, an integrative neuroscience approach. Academic, Oxford, Chapter 2.4

    Google Scholar 

  • Miller G (2005) Bats have a feel for flight. Science 310:1260–1261

    PubMed  CAS  Google Scholar 

  • Möhres FP (1966) Communicative characters of sonar signals in bats. In: Busnel R-G (ed) Animal sonar systems: biology and bionics, vol 2. Laboratoire de Physiologie Acoustique, Jouy-en-Josas, pp 939–945

    Google Scholar 

  • Mora EC, Macias S (2007) Echolocation calls of Poey’s flower bat (Phyllonycteris poeyi) unlike those of other phyllostomids. Naturwissenschaften 94:380–383

    PubMed  CAS  Google Scholar 

  • Mora EC, Macias S, Vater M, Coro F, Kossl M (2004) Specializations for aerial hawking in the echolocation system of Molossus molossus (Molossidae, Chiroptera). J Comp Physiol A190:561–574

    Google Scholar 

  • Mueller R (2004) A numerical study of the role of the tragus in the big brown bat. J Acoust Soc Am 116:3701–3712

    Google Scholar 

  • Mueller R, Lu H, Zhang S, Peremans H (2006) A helical biosonar scanning pattern in the Chinese noctule, Nyctalus plancyi. J Acoust Soc Am 119:3092–4083

    Google Scholar 

  • Neuweiler G (1989) Foraging ecology and audition in echolocating bats. TREE 4:160–166

    PubMed  CAS  Google Scholar 

  • Neuweiler G (1990) Auditory adaptations for prey capture in echolocating bats. Physiol Rev 70:615–641

    PubMed  CAS  Google Scholar 

  • Norberg UM (1985) Evolution of vertebrate flight: an aerodynamic model for the transition from gliding to active flight. Am Nat 126:303–327

    Google Scholar 

  • Norberg UM, Rayner JMV (1987) Ecological morphology and flight in bats (Mammalia, Chiroptera) – wing adaptations, flight performance, foraging strategy and echolocation. Philos Trans R Soc Lond B Biol Sci 316:337–419

    Google Scholar 

  • Obrist MK, Fenton MB, Eger JL, Schlegel PA (1993) What ears do for bats: a comparative study of pinna sound pressure transformation in Chiroptera. J Exp Biol 180:119–152

    PubMed  CAS  Google Scholar 

  • Oppenheim AV, Schafer RW, Buck JR (1999) Discrete-time signal processing. Prentice Hall, Garden City, NY

    Google Scholar 

  • Parsons S, Riskin DK, Hermanson JW (2010) Echolocation call production during aerial and terrestrial locomotion by New Zealand’s enigmatic lesser short-tailed bat, Mystacina tuberculata. J Exp Biol 213:551–557

    PubMed  Google Scholar 

  • Pedersen SC (1995) Cephalometric correlates of echolocation in the Chiroptera; II fetal development. J Morphol 225:107–123

    Google Scholar 

  • Pedersen SC (1996) Skull growth and the presence of auxiliary fontanels in rhinolophid bats (Microchiroptera). Zoomorphology 116:205–212

    Google Scholar 

  • Pedersen SC (1998) Morphometric analysis of the chiropteran skull with regard to mode of echolocation. J Mammal 79:91–103

    Google Scholar 

  • Pettigrew JD (1991) Wings or brain? Convergent evolution in the origins of bats. Syst Zool 40:199–216

    Google Scholar 

  • Pye JD (1968) How insects hear. Nature 218:797

    Google Scholar 

  • Ratcliffe JM (2009) Predator–prey interaction in an auditory world. In: Dukas R, Ratcliffe JM (eds) Cognitive ecology II. University of Chicago Press, Chicago, IL, pp 201–228

    Google Scholar 

  • Ratcliffe JM, Jakobsen L, Kalko EKV, Surlykke A (2011) Frequency alternation and an offbeat rhythm indicate foraging behaviour in the echolocating bat, Saccopteryx bilineata. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197:413–423. doi:10.1007/s00359-011-0630-0

    PubMed  Google Scholar 

  • Roeder KD (1967) Nerve cells and insect behavior, revisedth edn. Harvard University Press, Cambridge

    Google Scholar 

  • Schnitzler H-U, Kalko EKV (2001) Echolocation by insect-eating bats. Bioscience 51:57–569

    Google Scholar 

  • Schnitzler H-U, Kalko EKV, Kaipf I, Grinnell AD (1994) Fishing and echolocation behavior of the greater bulldog bat, Noctilio leporinus. Behav Ecol Sociobiol 35:327–345

    Google Scholar 

  • Schuchmann M, Siemers BM (2010) Behavioral evidence for community-wide species discrimination from echolocation calls in bats. Am Nat 176:72–82

    PubMed  Google Scholar 

  • Sears KE, Behringer RR, Raswweiler JJ IV, Niswander LA (2006) Development of bat flight: morphologic and molecular evolution of bat wing digits. Proc Natl Acad Sci USA 103:6581–6586

    PubMed  CAS  Google Scholar 

  • Siemers BN, Schnitzler HU (2004) Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature 429:657–661

    PubMed  CAS  Google Scholar 

  • Simmons NB (1994) The case for chiropteran monophyly. Am Mus Novit 3103:1–54

    Google Scholar 

  • Simmons NB (2008) Taking wing. Sci Am 2008:96–103

    Google Scholar 

  • Simmons NB, Geisler JH (1998) Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages in Microchiroptera. Bull Am Mus Nat Hist 235:1–182

    Google Scholar 

  • Simmons JA, Stein RA (1980) Acoustic imaging in bat sonar: echolocation signals and the evolution of echolocation. J Comp Physiol A135:61–84

    Google Scholar 

  • Simmons NB, Novacek MJ, Baker RJ (1991) Approaches, methods and the future of the chiropteran monophyly controversy: a reply to J.D. Pettigrew. Syst Zool 40:239–243

    Google Scholar 

  • Simmons NB, Seymour KL, Habersetzer J, Gunnell GF (2008) Primitive early Eocene bat from Wyoming and the evolution of flight and echolocation. Nature 451:818–821

    PubMed  CAS  Google Scholar 

  • Simmons NB, Seymour KL, Habersetzer J, Gunnell GF (2010) Inferring echolocation in ancient bats. Nature 466:E8

    PubMed  CAS  Google Scholar 

  • Speakman JR, Racey PA (1991) No cost of echolocation for bats in flight. Nature 350:421–423

    PubMed  CAS  Google Scholar 

  • Stamper SA, Bates ME, Benedicto D, Simmons JA (2009) Role of broadcast harmonics in echo delay perception by big brown bats. J Comp Physiol A 195:79–89

    Google Scholar 

  • Surlykke A, Kalko EKV (2008) Echolocating bats cry out loud to detect their prey. PLoS One 3:e2036. doi:10.1371/journal.pone.0002036

    PubMed  Google Scholar 

  • Surlykke A, Ghose K, Moss CF (2009a) Acoustic scanning of natural scenes by echolocation in the big brown bat, Eptesicus fuscus. J Exp Biol 212:1011–1020

    PubMed  Google Scholar 

  • Surlykke A, Pederson SB, Jakobsen L (2009b) Echolocating bats emit a highly directional sonar sound beam in the field. Proc Biol Sci 276:853–960

    PubMed  Google Scholar 

  • Suthers RA, Thomas SP, Suthers BJ (1972) Respiration, wing-beat and ultrasonic pulse emission in an echo-locating bat. J Exp Biol 56:17–48

    Google Scholar 

  • Suthers RA, Hartley DJ, Wenstrup JJ (1989) The acoustic role of tracheal chambers and nasal cavities in the production of sonar pulses by the horseshoe bat, Rhinolophus hildebrandti. J Comp Physiol A162:799–813

    Google Scholar 

  • Swartz C, Tressler J, Keller H, Vanzant M, Ezell S, Smotherman M (2007) The tiny difference between foraging and communication buzzes uttered by the Mexican free-tailed bat, Tadarida brasiliensis. J Comp Physiol A 193:853–863

    Google Scholar 

  • Teeling EC (2009) Hear, hear: the convergent evolution of echolocation in bats? TREE 24:351–354

    PubMed  Google Scholar 

  • Thomas JA, Moss CF, Vater M (eds) (2002) Echolocation in bats and dolphins. University of Chicago Press

    Google Scholar 

  • Ulanovsky N, Fenton MB, Tsoar A, Korine C (2004) Dynamics of jamming avoidance in echolocating bats. Proc Biol Sci 271:1467–1475

    PubMed  Google Scholar 

  • Vanderelst D, deMey F, Peremans H, Kalko E, Firzlaff U (2010) What noseleaves do for FM bats depends on their degree of sensorial specialization. PLoS One 5:e11893. doi:10.1371/journal.pone.0011893

    PubMed  Google Scholar 

  • Veselka N, McErlain DD, Holdsworth DW, Eger JL, Chhem RK, Mason MJ, Brain KL, Faure PA, Fenton MB (2010a) A bony connection signals laryngeal echolocation in bats. Nature 463:939–942

    PubMed  CAS  Google Scholar 

  • Veselka N, McErlain DD, Holdsworth DW, Eger JL, Chhem RK, Mason MJ, Brain KL, Faure PA, Fenton MB (2010b) Reply to Simmons et al. Nature 466:e9–e10

    CAS  Google Scholar 

  • Voight-Heucke S, Taborsky M, Dechmann DKN (2010) A dual function of echolocation: bats use echolocation calls to identify familiar and unfamiliar individuals. Anim Behav 80:59–67

    Google Scholar 

  • Von Helversen D, von Helverson O (2003) Object recognition by echolocation: a nectar-feeding bat exploiting flowers of a rain forest vine. J Comp Physiol A 189:327–336

    Google Scholar 

  • Von Helversen D, von Helvesen O (1999) Acoustic guide in bat-pollinated flower. Nature 398:759–760

    Google Scholar 

  • Weatherbee SD, Behringer RR, Rasweiler JJ IV, Nisander LA (2006) Interdigital webbing retention in bat wings illustrates genetic changes underlying amniote limb diversification. Proc Natl Acad Sci USA 103:15103–15107

    PubMed  CAS  Google Scholar 

  • Yovel Y, Franz MO, Stilz P, Schnitzler H-U (2008) Plant classification from bat-liked echolocation signals. PLoS Comput Biol 4:e1000032. doi:10.1371/journal.pcbi.1000032

    PubMed  Google Scholar 

  • Yovel Y, Falk B, Moss CF, Ulanovsky N (2010) Optimal localization by pointing off axis. Science 327:701–704

    PubMed  CAS  Google Scholar 

  • Zhuang Q, Mueller R (2006) Noseleaf furrows in a horseshoe bat act as resonance cavities shaping the biosonar beam. Phys Rev Lett 97:218701

    PubMed  Google Scholar 

Download references

Acknowledgements

I thank Beth Clare and Liam McGuire for their comments on earlier versions of this manuscript and the editors for inviting me to contribute to this volume. My research on bats has been supported by Discovery and Research Tools and Equipment Grants from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Brock Fenton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fenton, M.B. (2013). Evolution of Echolocation. In: Adams, R., Pedersen, S. (eds) Bat Evolution, Ecology, and Conservation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7397-8_3

Download citation

Publish with us

Policies and ethics