Skip to main content

Metal Oxide-Based Nanocomposites for Conductometric Gas Sensors

  • Chapter
  • First Online:
Handbook of Gas Sensor Materials

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Metal-metal oxide and metal oxide-metal oxide composites are discussed in present chapter. It is shown that due to the addition in metal oxide matrix either noble metal nanoparticles or second metal oxides, important for gas sensor applications highly sophisticated surface-related properties such as optical, electronic, catalytic, mechanical and chemical can be obtained in complex metal oxides and composites.(непонятно) As a result we receive effective way for improving selectivity and stability of metal oxide conductometric gas sensors. The mechanisms of parameters improvement in metal oxide composites-based gas sensors and disadvantages of mentioned above approach to gas sensor design are also analyzed. Chapter includes 8 figures, 3 Tables and 51 references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal A, Cioffi N, Sabbatini L, Torsi L (2012) NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives. Sens Actuators B 171–172:25–42

    Article  Google Scholar 

  • Arbiol J, Morante JR, Bouvier P, Pagnier T, Makeeva EA, Rumyantseva MN, Gaskov AM (2006) SnO2/MoO3-nanostructure and alcohol detection. Sens Actuators B 118:156–162

    Article  CAS  Google Scholar 

  • Baraton MI, Merhari L, Wang J, Gonsalves KE (1997) Dispersion of metal oxide nanoparticles in conjugated polymers: investigation of the TiO2/PPV nanocomposite. MRS Symp Proc 501:59–64

    Article  Google Scholar 

  • Barret P, Dufour LC (eds) (1985) Reactivity of solids. Elsevier, Amsterdam

    Google Scholar 

  • Capone S, Forleo A, Francioso L, Rella R, Siciliano P, Spadavecchia J, Presicce DS, Taurino AM (2003) Solid state gas sensors: state of the art and future activities. J Optoelectron Adv Mater 5:1335–1348

    CAS  Google Scholar 

  • Carreno NLV, Maciel AP, Leite ER, Lisboa-Filho PN, Longo E, Valentino A, Probst LED, Paiva-Santos CO, Schreiner WH (2002) The influence of cations segregation on the methanol decomposition on nanostructured SnO2. Sens Actuators B 86:185–192

    Article  CAS  Google Scholar 

  • Chen A, Huang X, Tong Z, Bai S, Luo R, Liu CC (2006) Preparation, characterization and gas-sensing properties of SnO2–In2O3 nanocomposite oxides. Sens Actuators B 115:316–321

    Article  CAS  Google Scholar 

  • Choi SD, Lee DD (2001) CH4 sensing characteristics of K-, Ca-, Mg-impregnated SnO2 sensors. Sens Actuators B 77:335–338

    Article  CAS  Google Scholar 

  • Comini E, Ferroni M, Guidi V, Faglia G, Martinelli G, Sberveglieri G (2002) Nanostructured mixed oxides compounds for gas sensing applications. Sens Actuators B 84:26–32

    Article  CAS  Google Scholar 

  • Dufour LC, Nowotny J (eds) (1988) Surface and near-surface chemistry of oxide materials. Elsevier, Amsterdam

    Google Scholar 

  • Ferroni M, Boscarino D, Comini E, Gnani D, Guidi V, Martinelli G, Nelli P, Rigato V, Sberveglieri G (1999) Nanosized thin films of tungsten-titanium mixed oxides as gas sensors. Sens Actuators B 58:289–294

    Article  CAS  Google Scholar 

  • Ferroni M, Carotta MC, Guidi V, Martinelli G, Ronconi F, Sacerdoti M, Traversa E (2001) Preparation and characterization of nanosized titania sensing film. Sens Actuators B 77:163–166

    Article  CAS  Google Scholar 

  • Flahaut E, Peigney A, Laurent C, Marliere C, Chastel F, Rousset A (2000) Carbon nanotube–metal–oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Mater 48:3803–3812

    Article  CAS  Google Scholar 

  • Gas’kov AM, Rumyantseva MN (2001) Nature of gas sensitivity in nanocrystalline metal oxides. Russ J Appl Chem 74(3):440–444

    Article  Google Scholar 

  • Gas’kov A, Rumyantseva M (2009) Metal oxide nanocomposites: synthesis and characterization in relation with gas sensing phenomena. In: Baraton MI (ed) Sensors for environment, health and security. Springer Science+Business Media B.V., Dordrecht, pp 3–29

    Chapter  Google Scholar 

  • Gutierrer FJ, Ares L, Robla JI, Horillo MC, Sayago I, Getino JM, de Agapito JA (1993) NO x tin dioxide sensors activities, as a function of doped materials and temperature. Sens Actuators B 15–16:354–356

    Article  Google Scholar 

  • Ihokura K, Watson J (1994) The stannic oxide gas sensor, principle and applications. CRC Press, Boca Raton, FL

    Google Scholar 

  • Ivanovskaya M, Bogdanov P (2001) The role of catalytic additives in gas-sensitivity of SnO2-Mo based thin film sensors. Sens Actuators B 77:268–274

    Article  CAS  Google Scholar 

  • Ivanovskaya M, Bogdanov P, Faglia G, Nelli P, Sberveglieri G, Taroni A (2001) On the role of catalytic additives in gas-sensitivity of SnO2-Mo based thin film sensors. Sens Actuators B 77:268–274

    Article  CAS  Google Scholar 

  • Ivanovskaya M, Kotsikau D, Faglia G, Nelli P (2003) Influence of chemical composition and structural factors of Fe2O3/In2O3 sensors on their selectivity and sensitivity to ethanol. Sens Actuators B 96:498–503

    Article  CAS  Google Scholar 

  • Kaji T, Oono H, Nakahara T, Yamazoe N, Seiyama T (1980) Fixation of palladium(II) and copper(II) complexes on the surface of stannic oxide (SnO2) and their catalytic activity for propylene oxidation. J Chem Soc Jpn 7:1088–1093

    Google Scholar 

  • Kanazawa E, Sakai G, Shimanoe K, Kanmura Y, Teraoka Y, Miura N, Yamazoe N (2001) Metal oxide semiconductor N2O sensor for medical use. Sens Actuators B 77:72–77

    Article  CAS  Google Scholar 

  • Kohl D (1990) The role of noble metals in the chemistry of solid state gas sensors. Sens Actuators B 1:158–165

    Article  CAS  Google Scholar 

  • Konig U (1987) Deposition and properties of multicomponent hard coating. Surf Coat Technol 33:91–103

    Article  Google Scholar 

  • Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxides: state of the art and approaches. Sens Actuators B 107:209–232

    Article  CAS  Google Scholar 

  • Korotcenkov G (2007) Practical aspects in design of one-electrode semiconductor gas sensors: status report. Sens Actuators B 121:664–678

    Article  CAS  Google Scholar 

  • Korotcenkov G (2010) Methods of sensing materials’ modification: material engineering of metal oxides. In: Korotcenkov G (ed) Chemical sensors: fundamentals of sensing materials, vol 1, General approaches. Momentum Press, New York, pp 303–368

    Google Scholar 

  • Korotcenkov G, Cho BK (2010) Methods of sensing materials synthesis and deposition. In: Korotcenkov G (ed) Chemical sensors: fundamentals of sensing materials, vol 1, General approaches. Momentum Press, New York, pp 214–303

    Google Scholar 

  • Korotcenkov G, Han SD (2009) (Cu, Fe, Co and Ni)-doped SnO2 films deposited by spray pyrolysis: doping influence on thermal stability of SnO2 film structure. Mater Chem Phys 113:756–763

    Article  CAS  Google Scholar 

  • Korotcenkov G, Sysoev V (2011) Conductometric metal oxide gas sensors. In: Korotcenkov G (ed) Chemical sensors: comprehensive sensor technologies, vol 4, Solid state devices. Momentum Press, New York, pp 39–186

    Google Scholar 

  • Korotcenkov G, Brinzari V, Boris Y, Ivanov M, Schwank J, Morante J (2003) Surface Pd doping influence on gas sensing characteristics of SnO2 thin films deposited by spray pyrolysis. Thin Solid Films 436:119–126

    Article  CAS  Google Scholar 

  • Korotcenkov G, Brinzari V, Boris I (2008) (Cu, Fe, Co or Ni)-doped SnO2 films deposited by spray pyrolysis: doping influence on film morphology. J Mater Sci 43(8):2761–2770

    Article  CAS  Google Scholar 

  • Matsushima S, Maekawa T, Tamaki J, Miura N, Yamazoe N (1992) New methods for supporting palladium on a tin oxide gas sensor. Sens Actuators B 9:71–78

    Article  CAS  Google Scholar 

  • Nakao Y (1995) Noble metal solid sols in poly(methyl) methacrylate. J Colloid Interface Sci 171:386–391

    Article  CAS  Google Scholar 

  • Nitta M, Haradome M (1979) CO gas detection by ThO2-doped SnO2. J Electron Mater 8:571–572

    Article  CAS  Google Scholar 

  • Nitta M, Otani S, Haradome M (1980) Temperature dependence of resistivities of SnO2-based gas sensors exposed to Co, H2, and C3H8 gases. J Electron Mater 9:727–743

    Article  CAS  Google Scholar 

  • Pagnier T, Boulova M, Galerie A, Gaskov A, Lucazeau G (2000) Reactivity of SnO2-CuO nanocrystalline materials with H2S: a coupled electrical and Raman spectroscopic study. Sens Actuators B 71:134–139

    Article  CAS  Google Scholar 

  • Rastomjee CS, Dale RS, Schaffer RJ, Jones FH, Egdell RG, Georgiadis GC, Lee MJ, Tate TJ, Cao LL (1996) An investigation of doping of SnO2 by ion implantation and application of ion-implanted films as gas sensors. Thin Solid Films 279:98–105

    Article  CAS  Google Scholar 

  • Rodriguez JA, Kim JY, Hanson JC, Perez M, Frenkel AI (2003) Reduction of CuO in H2: in situ time-resolved XRD studies. Catal Lett 85(3–4):247–254

    Article  CAS  Google Scholar 

  • Rosenfeld D, Sanjines R, Schreiner WH, Levy F (1993) Gas sensitive and selective SnO2 thin polycrystalline films doped by ion implantation. Sens Actuators B 15–16:406–412

    Article  Google Scholar 

  • Sayago I, Gutierrer FJ, Ares L, Robla JI, Horrillo MC, Getino J, Rino J, Agapito JA (1995) The effect of additives in tin oxide on the sensitivity and selectivity to NOx and CO. Sens Actuators B 26:19–23

    Article  CAS  Google Scholar 

  • Sulz G, Kuhner G, Reiter H, Uptmoor G, Schweizer W, Low H, Lacher M, Steiner K (1993) Ni, In and Sb implanted Pt and V catalysed thin-film SnO2 gas sensors. Sens Actuators B 15–16:390–395

    Article  Google Scholar 

  • Szezuko D, Werner J, Oswald S, Behr G, Wetzing K (2001) XPS investigations of surface segregation of doping elements in SnO2. Appl Surf Sci 179:301–306

    Article  Google Scholar 

  • Tamaki J, Maekawa T, Miura N, Yamazoe N (1992) CuO-SnO2 element for highly sensitive and selective detection of H2S. Sens Actuators B 9:197–203

    Article  CAS  Google Scholar 

  • Varela JA, Cerri JA, Leite ER, Longo E, Shamsuzzoha M, Bradt RC (1999) Microstructural evolution during sintering of CoO doped SnO2 ceramics. Ceram Int 25:253–256

    Article  CAS  Google Scholar 

  • Yamaura H, Moriya K, Miura N, Yamazoe N (2000) Mechanism of sensitivity promotion in CO sensors using indium oxide and cobalt oxide. Sens Actuators B 65:39–41

    Article  CAS  Google Scholar 

  • Yamazoe N (1991) New approaches for improving semiconductor gas sensors. Sens Actuators B 5:7–19

    Article  CAS  Google Scholar 

  • Yamazoe N (2005) Toward innovations of gas sensor technology. Sens Actuators B 108:2–14

    Article  CAS  Google Scholar 

  • Yamazoe N, Kurokawa Y, Seiyama T (1983) Effects of additives on semiconductor gas sensors. Sens Actuators 4:283–289

    Article  CAS  Google Scholar 

  • Yang D (2011) Nanocomposite films for gas sensing, In: Reddy B (ed) Advances in nanocomposites—synthesis, characterization and industrial applications (Ch. 37). InTech, New York, pp 857–882. http://www.intechopen.com

  • Zhou XH, Cao QX, Huang H, Yang P, Hu Y (2003) Study on sensing mechanism of CuO-SnO2 gas sensors. Mater Sci Eng B 99:44–47

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Korotcenkov, G. (2014). Metal Oxide-Based Nanocomposites for Conductometric Gas Sensors. In: Handbook of Gas Sensor Materials. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7388-6_14

Download citation

Publish with us

Policies and ethics