Skip to main content

Neuromuscular Control Systems, Models of

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Synonyms

Models of neural control of movement; Models of neuromotor control

Definition

The neuromuscular control system is the network of neurons and muscles involved in the control of movement and posture. In many instances, the definition of the system also includes the sensors, sensory processing circuitry, and/or the passive mechanical structures that influence movement. Models of neuromuscular control systems, which are mathematical representations of one or more components, are used extensively in scientific investigations of neural control and in engineering development of biomimetic systems.

Detailed Description

An animal’s ability to move is critical for exploration, interaction with the environment, and ultimately, survival. Neuromotor systems have been some of the most studied in neuroscience because movement is a readily observable behavior and the experimental environment can often be altered to manipulate the demands on the motor control system. The experimental paradigms...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbas JJ (2011) Biomimetic adaptive control algorithms. In: Jung R (ed) Biohybrid systems: nerves, interfaces and machines. Wiley-VCH, Weinheim

    Google Scholar 

  • Abbas JJ, Abraham A (2014) Biomimetic approaches to physiological control. In: Bronzino JD (ed) The biomedical engineering handbook. CRC, Boca Raton

    Google Scholar 

  • Abbas JJ, Full RJ (2000) Neuromechanical interaction in cyclic movements. In: Winters JM, Crago PE (eds) Biomechanics and neural control of movement. Springer, New York, pp 177–191

    Chapter  Google Scholar 

  • Abbas JJ, Riener R (2001) Using mathematical models and advanced control systems techniques to enhance neuroprosthesis function. Neuromodulation: J Int Neuromodulation Soc 4:187–195

    Article  CAS  Google Scholar 

  • Ambroise M, Levi T, Joucla S, Yvert B, Saighi S (2013) Real-time biomimetic central pattern generators in an FPGA for hybrid experiments. Front Neurosci 7:215

    Article  PubMed Central  PubMed  Google Scholar 

  • Bar-Cohen Y (2006) Biomimetics – using nature to inspire human innovation. Bioinspir Biomim 1:P1–P12

    Article  PubMed  Google Scholar 

  • Bicchi A, Gabiccini M, Santello M (2011) Modelling natural and artificial hands with synergies. Philos Trans R Soc Lond B Biol Sci 366:3153–3161

    Article  PubMed Central  PubMed  Google Scholar 

  • Burdet E, Franklin DW, Milner TE (2013) Human robotics: neuromechanics and motor control. MIT Press, Cambridge, MA

    Google Scholar 

  • Cheng EJ, Loeb GE (2008) On the use of musculoskeletal models to interpret motor control strategies from performance data. J Neural Eng 5:232–253

    Article  PubMed  Google Scholar 

  • Chiel HJ, Ting LH, Ekeberg O, Hartmann MJZ (2009) The brain in its body: motor control and sensing in a biomechanical context. J Neurosci 29:12807–12814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cook G, Stark L (1967) Derivation of a model for the human eye-positioning mechanism. Bull Math Biol 29:153–174

    Google Scholar 

  • Davidson PR, Wolpert DM (2005) Widespread access to predictive models in the motor system: a short review. J Neural Eng 2:S313–S319

    Article  PubMed  Google Scholar 

  • de Rugy A, Loeb GE, Carroll TJ (2012) Muscle coordination is habitual rather than optimal. J Neurosci 32:7384–7391

    Article  PubMed  Google Scholar 

  • de Rugy A, Loeb GE, Carroll TJ (2013) Are muscle synergies useful for neural control? Front Comput Neurosci 7:19

    PubMed Central  PubMed  Google Scholar 

  • Diedrichsen J, Shadmehr R, Ivry RB (2010) The coordination of movement: optimal feedback control and beyond. Trends Cogn Sci 14:31–39

    Article  PubMed  Google Scholar 

  • Duysens J, De Groote F, Jonkers I (2013) The flexion synergy, mother of all synergies and father of new models of gait. Front Comput Neurosci 7:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Ekeberg O (1993) A combined neuronal and mechanical model of fish swimming. Biol Cybern 69:363–374

    Article  Google Scholar 

  • Ermentrout GB, Terman DH (2010) Mathematical foundations of neuroscience. Springer, New York

    Book  Google Scholar 

  • Esposito MS, Capelli P, Arber S (2014) Brainstem nucleus MdV mediates skilled forelimb motor tasks. Nature 508:351–356

    Article  CAS  PubMed  Google Scholar 

  • Franklin DW, Wolpert DM (2011) Computational mechanisms of sensorimotor control. Neuron 72:425–442

    Article  CAS  PubMed  Google Scholar 

  • Gentner R, Edmunds T, Pai DK, d’Avella A (2013) Robustness of muscle synergies during visuomotor adaptation. Front Comput Neurosci 7:120

    Article  PubMed Central  PubMed  Google Scholar 

  • Grillner S, Wallen P, Saitoh K, Kozlov A, Robertson B (2008) Neural bases of goal-directed locomotion in vertebrates – an overview. Brain Res Rev 57:2–12

    Article  PubMed  Google Scholar 

  • Harris-Warrick R, Coniglio L, Barazangi N, Guckenheimer J, Gueron S (1995) Dopamine modulation of transient potassium current evokes phase shifts in a central pattern generator network. J Neurosci 15:342–358

    CAS  PubMed  Google Scholar 

  • Ivanenko YP, Poppele RE, Lacquaniti F (2009) Distributed neural networks for controlling human locomotion: lessons from normal and SCI subjects. Brain Res Bull 78:13–21

    Article  CAS  PubMed  Google Scholar 

  • Izawa J, Criscimagna-Hemminger SE, Shadmehr R (2012) Cerebellar contributions to reach adaptation and learning sensory consequences of action. J Neurosci 32:4230–4239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Izhikevich EM (2010) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, Cambridge, MA

    Google Scholar 

  • Jung R (2011) Biohybrid systems: nerves, interfaces and machines. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Jung R, Kiemel T, Cohen AH (1996) Dynamic behavior of a neural network model of locomotor control in the lamprey. J Neurophys 75:1074–1086

    CAS  Google Scholar 

  • Kambara H, Shin D, Koike Y (2013) A computational model for optimal muscle activity considering muscle viscoelasticity in wrist movements. J Neurophysiol 109:2145–2160

    Article  PubMed Central  PubMed  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (2013) Principles of neural science, 5th edn. McGraw Hill, New York

    Google Scholar 

  • Katona PG, Poitras JW, Barnett GO, Terry BS (1970) Cardiac vagal efferent activity and heart period in the carotid sinus reflex. Am J Physiol 218:115–133

    Google Scholar 

  • Krakauer JW, Mazzoni P (2011) Human sensorimotor learning: adaptation, skill, and beyond. Curr Opin Neurobiol 21:636–644

    Article  CAS  PubMed  Google Scholar 

  • Loeb GE (2012) Optimal isn’t good enough. Biol Cybern 106:757–765

    Article  PubMed  Google Scholar 

  • Marmarelis VZ (1997) Modeling methodology for nonlinear physiological systems. Ann Biomed Eng 25:239–251

    Article  CAS  PubMed  Google Scholar 

  • Mileusnic MP, Brown IE, Lan N, Loeb GE (2006) Mathematical models of proprioceptors. I. Control and transduction in the muscle spindle. J Neurophysiol 96:1772–1788

    Article  PubMed  Google Scholar 

  • Moberget T, Gullesen EH, Andersson S, Ivry RB, Endestad T (2014) Generalized role for the cerebellum in encoding internal models: evidence from semantic processing. J Neurosci 34:2871–2878

    Article  CAS  PubMed  Google Scholar 

  • Morasso P, Baratto L, Spada G (1999) Internal models in the control of posture. Neural Netw 12:1173–1180

    Article  PubMed  Google Scholar 

  • Peckham PH (2007) Smart prosthetics: exploring assistive devices for the body and mind. National Academies Press, Washington, DC

    Google Scholar 

  • Pinter IJ, van Soest AJ, Bobbert MF, Smeets JB (2012) Conclusions on motor control depend on the type of model used to represent the periphery. Biol Cybern 106:441–451

    Article  PubMed  Google Scholar 

  • Robinson DA (1973) Models of the saccadic eye movement control system. Biol Cybern 14:71–83

    CAS  Google Scholar 

  • Schiff SJ (2012) Neural control engineering: the emerging intersection between control theory and neuroscience. MIT Press, Cambridge, MA

    Google Scholar 

  • Schultheiss NW, Prinz AA, Butera RJ Jr (2012) Phase response curves in neuroscience: theory, experiment, and analysis. Springer, New York

    Book  Google Scholar 

  • Scott SH (2012) The computational and neural basis of voluntary motor control and planning. Trends Cogn Sci 16:541–549

    Article  PubMed  Google Scholar 

  • Scott SH, Norman KE (2003) Computational approaches to motor control and their potential role for interpreting motor dysfunction. Curr Opin Neurol 16:693–698

    Article  PubMed  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Computational elements of the adaptive controller of the human arm. In: Cowan JD, Tesauro G, Alspector J (eds) Advances in neural information processing systems. Morgan Kaufman, San Mateo

    Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (2012) Biological learning and control: how the brain builds representations, predicts events, and makes decisions. MIT Press, Cambridge, MA

    Book  Google Scholar 

  • Shadmehr R, Smith MA, Krakauer JW (2010) Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 33:89–108

    Article  CAS  PubMed  Google Scholar 

  • Shenoy KV, Sahani M, Churchland MM (2013) Cortical control of arm movements: a dynamical systems perspective. Annu Rev Neurosci 36:337–359

    Article  CAS  PubMed  Google Scholar 

  • Tazerart S, Vinay L, Brocard F (2008) The persistent sodium current generates pacemaker activities in the central pattern generator for locomotion and regulates the locomotor rhythm. J Neurosci 28:8577–8589

    Article  CAS  PubMed  Google Scholar 

  • Ting LH, Chvatal SA, Safavynia SA, McKay JL (2012) Review and perspective: neuromechanical considerations for predicting muscle activation patterns for movement. Int J Numer Methods Biomed Eng 28:1003–1014

    Article  Google Scholar 

  • Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7:907–915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5:1226–1235

    Article  CAS  PubMed  Google Scholar 

  • Van de Crommert HWAA, Mulder T, Duysens J (1998) Neural control of locomotion; part II: sensory control of the central pattern generator and its relation to treadmill training. Gait Posture 7:251–263

    Article  PubMed  Google Scholar 

  • Verdaasdonk BW, Koopman HFJM, Helm FCT (2009) Energy efficient walking with central pattern generators: from passive dynamic walking to biologically inspired control. Biol Cybern 101:49–61

    Article  CAS  PubMed  Google Scholar 

  • Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11:1317–1329

    Article  CAS  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269:1880–1882

    Article  CAS  PubMed  Google Scholar 

  • Young LR, Stark L (1963) A discrete model for eye tracking movements. IEEE Trans Mil Electron 7:113–115

    Google Scholar 

  • Zelik KE, Huang TW, Adamczyk PG, Kuo AD (2014) The role of series ankle elasticity in bipedal walking. J Theor Biol 346:75–85

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Abbas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Abbas, J. (2014). Neuromuscular Control Systems, Models of. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_711-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_711-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics