Skip to main content

Time-Delayed Neural Networks: Stability and Oscillations

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Computational Neuroscience

Definition

A time-delayed neural network is a model for a biological or artificial neural network which is formulated in terms of a delay differential equation, i.e., an equation relating the derivative of the state of the system to the state of the system at some past times. Time delays can have profound effect on the network behavior; in particular, they can induce nonlinear transient or steady-state oscillations.

Detailed Description

Biological Background

In biological neural networks, if the axon is thick and myelinated, then the transportation of signals is fast. However, a considerable portion of the axons (estimated range: 20–40 percent) are very fine myelinated fibers or unmyelinated ones. These axons play quite an important role since they give rise to long delays, up to 100–200 ms (Herz et al. 1989; Miller 1994; Swadlow and Waxman 2012). In addition, there may be (post)synaptic delays, so that long-term potentiation even occurs if the signal from the source neuron has...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aboud N, Sathaye A, Stech HW (1988) BIFDE: software for the investigation of the Hopf bifurcation problem in functional differential equations. Proc 27th IEEE Conf Decis Control 1:821–824

    Article  Google Scholar 

  • Bélair J, Campbell SA, van den Driessche P (1996) Frustration, stability and delay-induced oscillations in a neural network model. SIAM J Appl Math 56(1):245–255

    Article  Google Scholar 

  • Breda D, Maset S, Vermiglio R (2004) Computing the characteristic roots for delay differential equations. IMA J Numer Anal 24(1):1–19

    Article  Google Scholar 

  • Buzsáki G (2006) Rhythms of the brain. Oxford University Press, New York

    Book  Google Scholar 

  • Cabrera JL, Patzwelt F (2013) Human balancing tasks: power laws, intermittency and levy flights. In: this volume. Springer, New York

    Google Scholar 

  • Campbell SA (2008) Calculating Centre manifolds for delay differential equations using maple. In: Balachandran B, Gilsinn DE, Kalmár-Nagy T (eds) Delay differential equations: recent advances and new directions. Springer, New York, pp 221–244

    Google Scholar 

  • Campbell SA, Kobelevskiy I (2012) Phase models and oscillators with time delayed coupling. Dyn Cont Disc Sys 32:2653–2673

    Article  Google Scholar 

  • Campbell SA, Ncube I, Wu J (2006) Multistability and stable asynchronous periodic oscillations in a multiple-delayed neural system. Phys D 214(2):101–119

    Article  Google Scholar 

  • Dahms T, Lehnert J, Sch¨oll E (2012) Cluster and group synchronization in delay-coupled networks. Phys Rev E 86(1):016202

    Article  Google Scholar 

  • Das SL, Chatterjee A (2002) Multiple scales without center manifold reductions for delay differential equations near Hopf bifurcations. Nonlinear Dyn 30(4):323–335

    Article  Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical neuroscience. MIT Press, Cambridge, MA

    Google Scholar 

  • Diekmann O, van Gils SA, Verduyn Lunel SM, Walther H-O (1995) Delay equations. Springer, New York

    Book  Google Scholar 

  • Engelborghs K, Luzyanina T, Roose D (2002) Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans Math Softw 28(1):1–21

    Article  Google Scholar 

  • Ermentrout EB (1994) Reduction of conductance-based models with slow synapses to neural nets. Neural Comput 6:679–695

    Article  Google Scholar 

  • Ermentrout GB (2002) Simulating, analyzing and animating dynamical systems: a guide to XPPAUT for researcher and students. SIAM, Philadelphia

    Book  Google Scholar 

  • Ermentrout GB, Terman DH (2010) Mathematical foundations of neuroscience. Springer, New York

    Book  Google Scholar 

  • Erneux T (2009) Applied delay differential equations. Springer, New York

    Google Scholar 

  • Faria T, Magalhães L (1995) Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation. J Diff Eq 122:181–200

    Article  Google Scholar 

  • Foss J, Longtin A, Mensour B, Milton JG (1996) Multistability and delayed recurrent loops. Phys Rev Lett 76:708–711

    Article  CAS  Google Scholar 

  • Gilli M (1993) Strange attractors in delayed cellular neural networks. IEEE Trans Circ Sys 40(11):849–853

    Article  Google Scholar 

  • Gilsinn DE (2008) Bifurcations, center manifolds, and periodic solutions. In: Balachandran B, Gilsinn DE, Kalmár-Nagy T (eds) Delay differential equations: recent advances and new directions. Springer, New York, pp 155–202

    Google Scholar 

  • Guo S, Wu J (2013) Bifurcation theory of functional differential equations. Springer, New York

    Book  Google Scholar 

  • Hale JK, Verduyn Lunel SM (1993) Introduction to functional differential equations. Springer-Verlag, New York

    Book  Google Scholar 

  • Herz AVM (1996) Global analysis of recurrent neural networks. In: Domany E, van Hemmen JL, Schulten K (eds) Models of neural networks III. Springer, Berlin, pp 1–54

    Google Scholar 

  • Herz AVM, Salzer B, Kuhn R, van Hemmen JL (1989) Hebbian learning reconsidered: representation of static and dynamic objects in associative neural nets. Biol Cybern 60:457–667

    Article  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Article  CAS  Google Scholar 

  • Kazarinoff ND, van den Dreissche P, Wan YH (1978) Hopf bifurcation and stability of periodic solutions of differential-difference and integro-differential equations. J Inst Math Appl 21:461–477

    Article  Google Scholar 

  • Kolmanovskii VB, Nosov VR (1986) Stability of functional differential equations, Mathematics in science and engineering, vol 180. Academic Press, New York

    Google Scholar 

  • Krawcewicz W, Wu J (1999) Theory and applications of Hopf bifurcations in symmetric functional-differential equations. Nonlinear Anal 35(7, Series A: Theory Methods):845–870

    Article  Google Scholar 

  • Krisztin T, Walther HO, Wu J (1999) Shape, smoothness and invariant stratification of an attracting set for delayed monotone positive feedback, Fields institute monographs, vol 11. AMS, Providence

    Google Scholar 

  • Kuang Y (1993) Delay differential equations with applications in population dynamics. Academic Press, San Diego

    Google Scholar 

  • Ma J, Wu J (2007) Multistability in spiking neuron models of delayed recurrent neural loops. Neural Comput 19:2124–2148

    Article  Google Scholar 

  • Ma J, Wu J (2010) Patterns, memory and periodicity in two-neuron delayed recurrent inhibitory loops. Math Model Nat Phenom 5:67–99

    Article  Google Scholar 

  • Mackey MC, Glass L (1977) Oscillations and chaos in physiological control systems. Science 197:287–289

    Article  CAS  Google Scholar 

  • Mallet-Paret J, Nussbaum RD (1989) A differential-delay equation arising in optics and physiology. SIAM J Math Anal 20(2):249–292

    Article  Google Scholar 

  • Marcus CM, Westervelt RM (1989) Stability of analog neural networks with delay. Phys Rev A 39(1):347–359

    Article  CAS  Google Scholar 

  • Miller R (1994) What is the contribution of axonal conduction delay to temporal structure in brain dynamics? In: Pantev C (ed) Oscillatory event-related brain dynamics. Plenum, NY, pp 53–57

    Chapter  Google Scholar 

  • Mu¨ller B, Reinhart J (1990) Neural networks : an introduction. Springer, Berlin/New York

    Book  Google Scholar 

  • Olgac N, Sipahi R (2002) An exact method for the stability analysis of time-delayed linear time-invariant (LTI) systems. IEEE Trans Autom Control 47(5):793–797

    Article  Google Scholar 

  • Orosz G (2014) Decomposition of nonlinear delayed networks around cluster states with applications to Neurodynamics. SIAM J Appl Dyn Syst 13(4):1353–1368

    Article  Google Scholar 

  • Pakdaman K (2013) Time-delayed neural networks: transient behaviours. In: this volume. Springer, New York

    Google Scholar 

  • Pakdaman K, Grotta-Ragazzo C, Malta CP, Arino O (1998) Effect of delay on the boundary of the basin of attraction in a system of two neurons. Neural Netw 11(3):609–619

    Article  Google Scholar 

  • Plant RE (1981) A Fitzhugh differential-difference equation modeling recurrent neural feedback. SIAM J Appl Math 40(1):150–162

    Article  Google Scholar 

  • Qesmi R, Ait BM, Hbid ML (2006) Computation of terms of center manifolds and normal elements of bifurcations for a class of functional differential equations associated with Hopf singularity. Appl Math Comp 175(2):932–968

    Article  Google Scholar 

  • Ramana Reddy DV, Sen A, Johnston GL (1998) Time delay induced death in coupled limit cycle oscillators. Phys Rev Let 80:5109–5112

    Article  CAS  Google Scholar 

  • Shampine LF, Thompson S (2001) Solving DDEs in MATLAB. Appl Numer Math 37:441–458

    Article  Google Scholar 

  • Smith H (1995) Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, Mathematical surveys and monographs, vol 41. American Mathematical Society, Providence

    Google Scholar 

  • Smith H (2011) An introduction to delay differential equations with applications to the life sciences, Texts in applied mathematics, vol 57. Springer, New York

    Google Scholar 

  • Sépán G. (1989) Retarded dynamical systems, Pitman research notes in mathematics, vol 210. Longman Group, Essex

    Google Scholar 

  • Swadlow HA, Waxman SG (2012) Axonal conduction delays. Scholarpedia 7(6):1451

    Article  Google Scholar 

  • Szalai R, Stepan G, Hogan S (2006) Continuation of bifurcations in periodic delay differential equations using characteristic matrices. SIAM J Sci Comput 28(4):1301–1317

    Article  Google Scholar 

  • Walther H-O (1995) The 2-dimensional attractor of x′(t) = −μx(t)+ f (x(t− 1)), Memoirs of the American Mathematical Society, vol 544. American Mathematical Society, Providence

    Google Scholar 

  • Wang Z, Campbell SA (2017) Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks. Chaos 27(11):114316

    Article  Google Scholar 

  • Yang DP, Robinson PA (2017) Critical dynamics of Hopf bifurcations in the corticothalamic system: transitions from normal arousal states to epileptic seizures. Phys Rev E 95:042410

    Article  Google Scholar 

  • Zhou S, Chen Y, Ma J, Wu J (2012) Delay for the capacity simplicity dilemma in associative memory attractor networks. Neural Netw 29(30):37–51

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhong Wu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wu, J., Campbell, S.A., Bélair, J. (2018). Time-Delayed Neural Networks: Stability and Oscillations. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_513-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_513-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7320-6

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Time-Delayed Neural Networks: Stability and Oscillations
    Published:
    11 July 2018

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_513-2

  2. Original

    Time-Delayed Neural Networks: Stability and Oscillations
    Published:
    08 February 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_513-1