Skip to main content

Thermodynamic Models of Ion Channels

  • Living reference work entry
  • First Online:
  • 462 Accesses

Definition

Thermodynamic models provide a kinetic description of ion channels starting from first principles. Instead of using empirical functions for the voltage dependence of the parameters of the ion channel, they are deduced from a physically plausible framework. This framework formalizes the effect of the interaction between the electric field and the ion channel. This interaction can be linear or nonlinear, leading to different classes of models for voltage-dependent ion channels.

Detailed Description

Introduction

The first quantitative description of the voltage dependence of ionic currents and their role in generating action potentials was provided by Hodgkin and Huxley (1952). This description, however, was semiempirical. They postulated that the ionic conductance was dependent on the assembly of “gating particles,” acting independently and in a voltage-dependent manner. This formalism gave rise to the well-known Hodgkin-Huxley set of equations, which could account...

This is a preview of subscription content, log in via an institution.

References

  • Andersen O, Koeppe RE II (1992) Molecular determinants of channel function. Physiol Rev 72:S89–S158

    CAS  PubMed  Google Scholar 

  • Borg-Graham LJ (1991) Modeling the nonlinear conductances of excitable membranes. In: Wheal H, Chad J (eds) Cellular and molecular neurobiology: a practical approach. Oxford University Press, New York, pp 247–275

    Google Scholar 

  • Chen C, Hess P (1990) Mechanisms of gating of T-type calcium channels. J Gen Physiol 96:603–630

    Article  CAS  PubMed  Google Scholar 

  • Destexhe A, Huguenard JR (2000) Nonlinear thermodynamic models of voltage-dependent currents. J Comput Neurosci 9:259–270

    Article  CAS  PubMed  Google Scholar 

  • Destexhe A, Huguenard JR (2010) Modeling voltage-dependent channels. In: DeSchutter E (ed) Computational modeling methods for neuroscientists. MIT Press, Cambridge, pp 107–137

    Google Scholar 

  • Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107115

    Google Scholar 

  • Eyring H, Lumry R, Woodbury JW (1949) Some applications of modern rate theory to physiological systems. Rec Chem Prog 10:100–114

    CAS  Google Scholar 

  • Hill TL, Chen YD (1972) On the theory of ion transport across nerve membranes. VI. Free energy and activation free energies of conformational change. Proc Natl Acad Sci U S A 69:1723–1726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hille B (2001) Ionic channels of excitable membranes. Sinauer Associates INC, Sunderland

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson FH, Eyring H, Stover BJ (1974) The theory of rate processes in biology and medicine. Wiley, New York

    Google Scholar 

  • Sigworth FJ (1993) Voltage gating of ion channels. Q Rev Biophys 27:1–40

    Article  Google Scholar 

  • Stevens CF (1978) Interactions between intrinsic membrane protein and electric field. Biophys J 22:295–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsien RW, Noble D (1969) A transition state theory approach to the kinetics of conductances in excitable membranes. J Membr Biol 1:248–273

    Article  CAS  PubMed  Google Scholar 

  • Willms AR, Baro DJ, Harris-Warrick RM, Guckenheimer J (1999) An improved parameter estimation method for Hodgkin-Huxley models. J Comput Neurosci 6:145–168

    Article  CAS  PubMed  Google Scholar 

Further Reading

  • Destexhe A, Mainen ZF, Sejnowski TJ (1994) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1:195–230

    Article  CAS  PubMed  Google Scholar 

  • Johnston D, Wu SM (1995) Foundations of cellular neurophysiology. MIT Press, Cambridge, MA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Destexhe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Destexhe, A. (2014). Thermodynamic Models of Ion Channels. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_136-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_136-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics