Skip to main content

A Remark on Transversal Numbers

  • Chapter
  • First Online:
Book cover The Mathematics of Paul Erdős I
  • 2202 Accesses

Abstract

In his classical monograph published in 1935, Dénes König [23] included one of Paul Erdős’s first remarkable results: an infinite version of the Menger theorem. This result (as well as the König-Hall theorem for bipartite graphs, and many related results covered in the book) can be reformulated as a statement about transversals of certain hypergraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Alon, G. Brightwell, H. A. Kierstead, A. V. Kostochka, and P. Winkler: Dominating sets in k-majority tournaments, Journal of Combinatorial Theory B 96 (2006), 374–387.

    Article  MathSciNet  MATH  Google Scholar 

  2. N.  Alon, G. Kalai, J. Matoušek, and R.  Meshulam: Transversal numbers for hypergraphs arising in geometry, Adv. in Appl. Math. 29 (2002), 79–101.

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Alon and D. J. Kleitman: Piercing convex sets and the Hadwiger–Debrunner (p, q)–problem, Adv. Math. 96 (1992), 103–112.

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Alon and J. Spencer: The Probabilistic Method, J. Wiley Interscience, New York, 1991.

    Google Scholar 

  5. I. Bárány: An extension of the Erdős–Szekeres theorem on large angles, Combinatorica 7 (1987), 161–169.

    Article  MathSciNet  Google Scholar 

  6. I. Bárány and J. Lehel: Covering with Euclidean boxes, European J. Combinatorics 8 (1987), 113–119.

    MATH  Google Scholar 

  7. C. Berge: Graphs and Hypergraphs, North–Holland, 1982.

    Google Scholar 

  8. J. H. Conway, H. T. Croft, P. Erdős and M. J. T. Guy: On the distribution of values of angles determined by coplanar points, J. London Math. Soc. (2) 19 (1979), 137–143.

    Google Scholar 

  9. L. Danzer: Zur Lösung des Gallaischen Problems über Kreisscheiben in der euklidischen Ebene, Studia Sci. Math. Hung. 21 (1986), 111–134.

    MathSciNet  MATH  Google Scholar 

  10. L. Danzer, B. Grünbaum and V. Klee: Helly’s theorem and its relatives, in: Convexity, Proc. Symp. Pure Math., Vol. 7, Amer. Math. Soc., Providence, 1963, 100–181.

    Google Scholar 

  11. G. Ding, P. Seymour and P. Winkler: Bounding the vertex cover number of a hypergraph, Combinatorica 14 (1994), 23–34.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Eckhoff: Helly, Radon and Carathéodory type theorems, in: Handbook of Convex Geometry (P. Gruber, J. Wills, eds.), North–Holland, Amsterdam, 1993, 389–448.

    Google Scholar 

  13. P. Erdős and Z. Füredi: The greatest angle among n points in the d–dimensional Euclidean space, Annals of Discrete Mathematics 17 (1983), 275–283.

    Google Scholar 

  14. P. Erdős and J. Spencer: Probabilistic Methods in Combinatorics, Akadémiai Kiadó, Budapest and Academic Press, New York, 1974.

    Google Scholar 

  15. P. Erdős and G. Szekeres: A combinatorial problem in geometry, Compositio Math. 2 (1935), 463–470.

    MathSciNet  Google Scholar 

  16. P. Erdős and G. Szekeres: On some extremum problems in elementary geometry, Ann. Univ. Sci. Budapest. Eötvös, Sect. Math. III–IV (1960–61), 53–62.

    Google Scholar 

  17. J. Goodman, R. Pollack and R. Wenger: Geometric transversal theory, in: New Trends in Discrete and Computational Geometry (J. Pach, ed.), Springer–Verlag, Berlin, 1993, 163–198.

    Google Scholar 

  18. R. Graham, B. Rothschild and J. Spencer: Ramsey Theory, J. Wiley and Sons, New York, 1980.

    MATH  Google Scholar 

  19. A. Gyárfás: A Ramsey–type theorem and its applications to relatives of Helly’s theorem, Periodica Math. Hung. 3 (1973), 261–270.

    Article  MATH  Google Scholar 

  20. A. Gyárfás and J. Lehel: A Helly–type problem in trees, Coll. Math. Soc. J. Bolyai 4. Combinatorial Theory and its Applications, North–Holland, Amsterdam, 1969, 571–584.

    Google Scholar 

  21. D. Haussler and E. Welzl: \(\varepsilon\)–nets and simplex range queries, Discrete Comput. Geometry 2 (1987), 127–151.

    Google Scholar 

  22. J. Komlós, J. Pach and G. Woeginger: Almost tight bounds for epsilon–nets, Discrete Comput. Geometry 7 (1992), 163–173.

    Article  MATH  Google Scholar 

  23. D. König: Theory of Finite and Infinite Graphs, Birkhäuser Verlag, Basel – Boston, 1990.

    Book  MATH  Google Scholar 

  24. J. Lehel: Gallai–type results for multiple boxes and forests, Europ. J. Combinatorics 9 (1988), 113–120.

    MathSciNet  MATH  Google Scholar 

  25. L. Lovász: Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (1972), 253–267.

    Article  MathSciNet  MATH  Google Scholar 

  26. T. Luczak and S. Thomassé: Coloring dense graphs via VC-dimension, arXiv:1007.1670.

    Google Scholar 

  27. J. Pach and P. Agarwal: Combinatorial Geometry, J. Wiley and Sons, New York, 1995.

    Book  MATH  Google Scholar 

  28. D. Pálvölgyi and A. Gyárfás: Domination in transitive colorings of tournaments, manuscript, 2012.

    Google Scholar 

  29. F. P. Ramsey: On a problem of formal logic, Proc. London Math. Soc. 30 (1930), 264–286.

    Article  MathSciNet  Google Scholar 

  30. A. Schrijver: Linear and Integer Programming, J. Wiley and Sons, New York, 1986.

    MATH  Google Scholar 

  31. M. Sharir: On k–sets in arrangements of curves and surfaces, Discrete Comput. Geom. 6 (1991), 593–613.

    Article  MathSciNet  MATH  Google Scholar 

  32. V. N. Vapnik and A. Ya. Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities, Theory Probab. Appl. 16 (1971), 264–280.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Pach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pach, J. (2013). A Remark on Transversal Numbers. In: Graham, R., Nešetřil, J., Butler, S. (eds) The Mathematics of Paul Erdős I. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7258-2_34

Download citation

Publish with us

Policies and ethics