Skip to main content

On Landau’s Function g(n)

  • Chapter
  • First Online:
The Mathematics of Paul Erdős I

Abstract

Let S n be the symmetric group of n letters. Landau considered the function g(n) defined as the maximal order of an element of S n ; Landau observed that (cf. [9])

$$\displaystyle{ g(n) =\max \mathrm{lcm}(m_{1},\ldots,m_{k}) }$$
(1)

where the maximum is taken on all the partitions \(n = m_{1} + m_{2} + \cdots + m_{k}\) of n and proved that, when n tends to infinity

$$\displaystyle{ \log g(n) \sim \sqrt{n\log n}. }$$
(2)

More precise asymptotic estimates have been given in [11, 22, 25].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. L. Alaoglu, P. Erdős, “On highly composite and similar numbers”, Trans. Amer. Math. Soc. 56, 1944, 448–469.

    MathSciNet  MATH  Google Scholar 

  2. M. Deléglise, J.-L. Nicolas, P. Zimmermann, “Landau’s function for one million billions”, J. de Théorie des Nombres de Bordeaux, 20, 2008, 625–671.

    Article  MATH  Google Scholar 

  3. M. Deléglise, J.-L. Nicolas, “Le plus grand facteur premier de la fonction de Landau”, Ramanujan J., 27, 2012, 109–145.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Erdős, “On highly composited numbers”, J. London Math. Soc., 19, 1944, 130–133.

    Article  MathSciNet  Google Scholar 

  5. P. Erdős, “Ramanujan and I”, Number Theory, Madras 1987, Editor : K. Alladi, Lecture Notes in Mathematics no 1395, Springer-Verlag, 1989.

    Google Scholar 

  6. P. Erdős, J.-L. Nicolas, “Répartition des nombres superabondants”, Bull. Soc. Math. France, 103, 1975, 65–90.

    MathSciNet  Google Scholar 

  7. P. Erdős, P. Turan, “On some problems of a statistical group theory”, I to VII, Zeitschr. fur Wahrschenlichkeitstheorie und verw. Gebiete, 4, 1965, 175–186; Acta Math. Hung., 18, 1967, 151–163; Acta Math. Hung., 18, 1967, 309–320; Acta Math. Hung., 19, 1968, 413–435; Periodica Math. Hung., 1, 1971, 5–13; J. Indian Math. Soc., 34, 1970, 175–192; Periodica Math. Hung., 2, 1972, 149–163.

    Google Scholar 

  8. J. Grantham, “The largest prime dividing the maximal order of an element of S n ”, Math. Comp., 64, 1995, 407–410.

    MathSciNet  MATH  Google Scholar 

  9. E. Landau, “Uber die Maximalordung der Permutation gegebenen Grades”, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1, 2nd edition, Chelsea, New-York, 1953, 222–229.

    Google Scholar 

  10. J. P. Massias, “Majoration explicite de l’ordre maximum d’un élément du groupe symétrique”, Ann. Fac. Sci. Toulouse Math., 6, 1984, 269–281.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. P. Massias, J.-L. Nicolas, G. Robin, “Evaluation asymptotique de l’ordre maximum d’un élément du groupe symétrique”, Acta Arithmetica, 50, 1988, 221–242.

    MathSciNet  MATH  Google Scholar 

  12. J. P. Massias, J.-L. Nicolas, G. Robin, “Effective bounds for the Maximal Order of an Element in the Symmetric Group”, Math. Comp., 53, 1989, 665–678.

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Miller, “The Maximum Order of an Element of a Finite Symmetric Group”, Amer. Math. Monthly, 94, 1987, 497–506.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. L. Montgomery, R. C. Vaughan, “The large sieve”, Mathematika, 20, 1973, 119–134.

    Article  MathSciNet  MATH  Google Scholar 

  15. J.-L. Nicolas, “Sur l’ordre maximum d’un élément dans le groupe S n des permutations”, Acta Arithmetica, 14, 1968, 315–332.

    MathSciNet  MATH  Google Scholar 

  16. J.-L. Nicolas, “Ordre maximum d’un élément du groupe de permutations et highly composite numbers”, Bull. Soc. Math. France, 97, 1969, 129–191.

    MathSciNet  MATH  Google Scholar 

  17. J.-L. Nicolas, “Ordre maximal d’un élément d’un groupe de permutations”, C.R. Acad. Sci. Paris, 270, 1970, 1473–1476.

    Google Scholar 

  18. J.-L. Nicolas, “Répartition des nombres largement composés”, Acta Arithmetica, 34, 1979, 379–390.

    MathSciNet  MATH  Google Scholar 

  19. S. Ramanujan, “Highly composite numbers”, Proc. London Math. Soc., Series 2, 14, 1915, 347–400; and “Collected papers”, Cambridge at the University Press, 1927, 78–128.

    Google Scholar 

  20. S. Ramanujan, “Highly composite numbers, annotated and with a foreword by J.-L. Nicolas and G. Robin”, Ramanujan J., 1, 1997, 119–153.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Selberg, “On the normal density of primes in small intervals and the difference between consecutive primes”, Arch. Math. Naturvid, 47, 1943, 87–105.

    MathSciNet  MATH  Google Scholar 

  22. S. Shah, “An Inequality for the Arithmetical Function g(x)”, J. Indian Math. Soc., 3, 1939, 316–318.

    MathSciNet  Google Scholar 

  23. H. Siebert, “Montgomery’s weighted sieve for dimension two”, Monatsch., Math., 82, 1976, 327–336.

    MathSciNet  MATH  Google Scholar 

  24. N. J. A. Sloane, “The On-Line Encyclopedia of Integer Sequences”, http://oeis.org. Accessed 12 December 2012.

  25. M. Szalay, “On the maximal order in S n and \(S_{n}^{{\ast}}\)”, Acta Arithmetica, 37, 1980, 321–331.

    MathSciNet  MATH  Google Scholar 

  26. http://math.univ-lyon1.fr/~nicolas/landaug.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Nicolas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nicolas, JL. (2013). On Landau’s Function g(n). In: Graham, R., Nešetřil, J., Butler, S. (eds) The Mathematics of Paul Erdős I. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7258-2_14

Download citation

Publish with us

Policies and ethics