Skip to main content

PDE11A

  • Living reference work entry
  • First Online:
Encyclopedia of Signaling Molecules
  • 52 Accesses

Historical Background

3′,5′-cyclic nucleotides (i.e., cAMP and cGMP) are intracellular signaling molecules that regulate a vast number of physiological processes, from cell-specific gene transcription to whole animal behavior (c.f., Neves et al. 2002; Francis et al. 2010). In order for cAMP and cGMP signaling to be effective, they must be tightly controlled. Although cyclic nucleotides are expressed in nearly every tissue, they are far from ubiquitously distributed. Cyclic nucleotides are actually confined to specific subcellular microdomains by a superfamily of enzymes known as the 3′,5′-cyclic nucleotide phosphodiesterases (PDEs) (Francis et al. 2011; Edwards et al. 2012). PDEs are the only known enzymes to degrade cyclic nucleotides (Francis et al. 2011). By hydrolyzing cAMP and cGMP, PDEs not only control the total cellular content of cAMP and cGMP, they are responsible for restricting these cyclic nucleotides to their microdomains. It is this compartmentalization of cyclic...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alda M, Shao L, Wang JF, Lopez de Lara C, Jaitovich-Groisman I, Lebel V, et al. Alterations in phosphorylated cAMP response element-binding protein (pCREB) signaling: an endophenotype of lithium-responsive bipolar disorder? Bipolar Disord. 2013;15:824–31. doi:10.1111/bdi.12131.

    Article  CAS  PubMed  Google Scholar 

  • Avissar S, Schreiber G. The involvement of G proteins and regulators of receptor-G protein coupling in the pathophysiology, diagnosis and treatment of mood disorders. [Review] [109 refs]. Clin Chim Acta. 2006;366:37–47.

    Article  CAS  PubMed  Google Scholar 

  • Avissar S, Nechamkin Y, Barki-Harrington L, Roitman G, Schreiber G. Differential G protein measures in mononuclear leukocytes of patients with bipolar mood disorder are state dependent. J Affect Disord. 1997;43:85–93.

    Article  CAS  PubMed  Google Scholar 

  • Bast T, Feldon J. Hippocampal modulation of sensorimotor processes. Prog Neurobiol. 2003;70:319–45.

    Article  CAS  PubMed  Google Scholar 

  • Bazhin AV, Kahnert S, Kimpfler S, Schadendorf D, Umansky V. Distinct metabolism of cyclic adenosine monophosphate in regulatory and helper CD4+ T cells. Mol Immunol. 2010;47:678–84. doi:10.1016/j.molimm.2009.10.032.

    Article  CAS  PubMed  Google Scholar 

  • Behrendt R-P. Neuroanatomy of social behavior: an evolutionary and psychoanalytic perspective. London: Karnac Books; 2011.

    Google Scholar 

  • Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev. 2006;58:488–520. doi:10.1124/pr.58.3.5.

    Article  CAS  PubMed  Google Scholar 

  • Boikos SA, Horvath A, Heyerdahl S, Stein E, Robinson-White A, Bossis I, et al. Phosphodiesterase 11A expression in the adrenal cortex, primary pigmented nodular adrenocortical disease, and other corticotropin-independent lesions. Horm Metab Res. 2008;40:347–53. doi:10.1055/s-2008-1076694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonkale WL, Cowburn RF, Ohm TG, Bogdanovic N, Fastbom J. A quantitative autoradiographic study of [3H]cAMP binding to cytosolic and particulate protein kinase A in post-mortem brain staged for Alzheimer’s disease neurofibrillary changes and amyloid deposits. Brain Res. 1999;818:383–96.

    Article  CAS  PubMed  Google Scholar 

  • Brietzke E, Stertz L, Fernandes BS, Kauer-Sant’anna M, Mascarenhas M, Escosteguy Vargas A, et al. Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder. J Affect Disord. 2009;116:214–7. doi:10.1016/j.jad.2008.12.001.

    Article  CAS  PubMed  Google Scholar 

  • Cabanero M, Laje G, Detera-Wadleigh S, McMahon FJ. Association study of phosphodiesterase genes in the sequenced treatment alternatives to relieve depression sample. Pharmacogenet Genomics. 2009;19:235–8. doi:10.1097/FPC.0b013e328320a3e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capell WR, Fisher JL, Kelly MP. N-terminal phosphorylation alters the subcellular compartmentalization of PDE11A4. in preparation.

    Google Scholar 

  • Casebolt TL, Jope RS. Effects of chronic lithium treatment on protein kinase C and cyclic AMP-dependent protein phosphorylation. Biol Psychiatry. 1991;29:233–43.

    Article  CAS  PubMed  Google Scholar 

  • Cembrowski MS, Bachman JL, Wang L, Sugino K, Shields BC, Spruston N. Spatial gene-expression gradients underlie prominent heterogeneity of CA1 pyramidal neurons. Neuron. 2016. doi:10.1016/j.neuron.2015.12.013.

    Google Scholar 

  • Chang A, Li PP, Warsh JJ. Altered cAMP-dependent protein kinase subunit immunolabeling in post-mortem brain from patients with bipolar affective disorder.[erratum appears in J Neurochem. 2003 Apr;85(1):286.]. J Neurochem. 2003;84:781–91.

    Article  CAS  PubMed  Google Scholar 

  • Coon H, Darlington T, Pimentel R, Smith KR, Huff CD, Hu H, et al. Genetic risk factors in two Utah pedigrees at high risk for suicide. Transl Psychiatry. 2013;3:e325. doi:10.1038/tp.2013.100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couzin J. Science and commerce. Gene tests for psychiatric risk polarize researchers. Science. 2008;319:274–7. doi:10.1126/science.319.5861.274.

    Article  CAS  PubMed  Google Scholar 

  • DeWan AT, Triche EW, Xu X, Hsu LI, Zhao C, Belanger K, et al. PDE11A associations with asthma: results of a genome-wide association scan. J Allergy Clin Immunol. 2010;126:871-3 e9. doi:10.1016/j.jaci.2010.06.051.

    Google Scholar 

  • Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67:446–57. doi:10.1016/j.biopsych.2009.09.033.

    Article  CAS  PubMed  Google Scholar 

  • Dowlatshahi D, MacQueen GM, Wang JF, Reiach JS, Young LT. G protein-coupled cyclic AMP signaling in postmortem brain of subjects with mood disorders: effects of diagnosis, suicide, and treatment at the time of death. J Neurochem. 1999;73:1121–6.

    Article  CAS  PubMed  Google Scholar 

  • Ebstein RP, Knafo A, Mankuta D, Chew SH, Lai PS. The contributions of oxytocin and vasopressin pathway genes to human behavior. Horm Behav. 2012;61:359–79. doi:10.1016/j.yhbeh.2011.12.014.

    Article  CAS  PubMed  Google Scholar 

  • Edwards HV, Christian F, Baillie GS. cAMP: novel concepts in compartmentalised signalling. Semin Cell Dev Biol. 2012;23:181–90. doi:10.1016/j.semcdb.2011.09.005.

    Article  CAS  PubMed  Google Scholar 

  • Fanselow MS, Dong HW. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron. 2010;65:7–19. doi:10.1016/j.neuron.2009.11.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatemi SH, Reutiman TJ, Folsom TD, Lee S. Phosphodiesterase-4A expression is reduced in cerebella of patients with bipolar disorder. Psychiatr Genet. 2008;18:282–8.

    Article  PubMed  Google Scholar 

  • Fatemi SH, Folsom TD, Reutiman TJ, Vazquez G. Phosphodiesterase signaling system is disrupted in the cerebella of subjects with schizophrenia, bipolar disorder, and major depression. Schizophr Res. 2010;119:266–7. doi:10.1016/j.schres.2010.02.1055.

    Article  PubMed  Google Scholar 

  • Faucz FR, Horvath A, Rothenbuhler A, Almeida MQ, Libe R, Raffin-Sanson ML, et al. Phosphodiesterase 11A (PDE11A) genetic variants may increase susceptibility to prostatic cancer. J Clin Endocrinol Metab. 2011;96:E135–40. doi:10.1210/jc.2010-1655.

    Article  CAS  PubMed  Google Scholar 

  • Fawcett L, Baxendale R, Stacey P, McGrouther C, Harrow I, Soderling S, et al. Molecular cloning and characterization of a distinct human phosphodiesterase gene family: PDE11A. Proc Natl Acad Sci U S A. 2000;97:3702–7. doi:10.1073/pnas.050585197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson JN, Young LJ, Hearn EF, Matzuk MM, Insel TR, Winslow JT. Social amnesia in mice lacking the oxytocin gene. Nat Genet. 2000;25:284–8. doi:10.1038/77040.

    Article  CAS  PubMed  Google Scholar 

  • Fields A, Li PP, Kish SJ, Warsh JJ. Increased cyclic AMP-dependent protein kinase activity in postmortem brain from patients with bipolar affective disorder. J Neurochem. 1999;73:1704–10.

    Article  CAS  PubMed  Google Scholar 

  • Francis SH, Busch JL, Corbin JD, Sibley D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev. 2010;62:525–63. doi:10.1124/pr.110.002907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis SH, Blount MA, Corbin JD. Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol Rev. 2011;91:651–90. doi:10.1152/physrev.00030.2010.

    Article  CAS  PubMed  Google Scholar 

  • Gross-Langenhoff M, Hofbauer K, Weber J, Schultz A, Schultz JE. cAMP is a ligand for the tandem GAF domain of human phosphodiesterase 10 and cGMP for the tandem GAF domain of phosphodiesterase 11. J Biol Chem. 2006;281:2841–6. doi:10.1074/jbc.M511468200.

    Article  CAS  PubMed  Google Scholar 

  • Gross-Langenhoff M, Stenzl A, Altenberend F, Schultz A, Schultz JE. The properties of phosphodiesterase 11A4 GAF domains are regulated by modifications in its N-terminal domain. FEBS J. 2008;275:1643–50. doi:10.1111/j.1742-4658.2008.06319.x.

    Article  CAS  PubMed  Google Scholar 

  • Gruber AJ, Calhoon GG, Shusterman I, Schoenbaum G, Roesch MR, O’Donnell P. More is less: a disinhibited prefrontal cortex impairs cognitive flexibility. J Neurosci. 2010;30:17102–10. doi:10.1523/JNEUROSCI.4623-10.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gusev PA, Cui C, Alkon DL, Gubin AN. Topography of Arc/Arg3.1 mRNA expression in the dorsal and ventral hippocampus induced by recent and remote spatial memory recall: dissociation of CA3 and CA1 activation. J Neurosci. 2005;25:9384–97.

    Article  CAS  PubMed  Google Scholar 

  • Hegde S, Capell WR, Ibrahim BA, Klett J, Patel NS, Sougiannis AT, et al. Phosphodiesterase 11A (PDE11A), enriched in ventral hippocampus neurons, is required for consolidation of social but not nonsocial memories in mice. Neuropsychopharmacology. 2016a;41:2920-31 doi:10.1038/npp.2016.106.

    Google Scholar 

  • Hegde S, Ji H, Oliver D, Patel NS, Poupore N, Shtutman M, et al. PDE11A regulates social behaviors and is a key mechanism by which social experience sculpts the brain. Neuroscience. 2016b;335:151–69. doi:10.1016/j.neuroscience.2016.08.019.

    Article  CAS  PubMed  Google Scholar 

  • Heikaus CC, Pandit J, Klevit RE. Cyclic nucleotide binding GAF domains from phosphodiesterases: structural and mechanistic insights. Structure. 2009;17:1551–7. doi:10.1016/j.str.2009.07.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hetman JM, Robas N, Baxendale R, Fidock M, Phillips SC, Soderling SH, et al. Cloning and characterization of two splice variants of human phosphodiesterase 11A. Proc Natl Acad Sci U S A. 2000;97:12891–5. doi:10.1073/pnas.200355397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath A, Giatzakis C, Robinson-White A, Boikos S, Levine E, Griffin K, et al. Adrenal hyperplasia and adenomas are associated with inhibition of phosphodiesterase 11A in carriers of PDE11A sequence variants that are frequent in the population. Cancer Res. 2006;66:11571–5. doi:10.1158/0008-5472.CAN-06-2914.

    Article  CAS  PubMed  Google Scholar 

  • Horvath A, Korde L, Greene MH, Libe R, Osorio P, Faucz FR, et al. Functional phosphodiesterase 11A mutations may modify the risk of familial and bilateral testicular germ cell tumors. Cancer Res. 2009;69:5301–6. doi:10.1158/0008-5472.CAN-09-0884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jager R, Russwurm C, Schwede F, Genieser HG, Koesling D, Russwurm M. Activation of PDE10 and PDE11 phosphodiesterases. J Biol Chem. 2012;287:1210–9. doi:10.1074/jbc.M111.263806.

    Article  PubMed  Google Scholar 

  • Jensen JB, Mork A. Altered protein phosphorylation in the rat brain following chronic lithium and carbamazepine treatments. Eur Neuropsychopharmacol. 1997;7:173–9.

    Article  CAS  PubMed  Google Scholar 

  • Kelly MP. Putting together the pieces of phosphodiesterase distribution patterns in the brain: a jigsaw puzzle of cyclic nucleotide regulation. In: Brandon NJ, West AR, editors. Cyclic nucleotide phosphodiesterases in the central nervous system: from biology to disease. Hoboken: Wiley; 2014.

    Google Scholar 

  • Kelly MP. Does phosphodiesterase 11A (PDE11A) hold promise as a future therapeutic target? Curr Pharm Des. 2015;21:389–416.

    Article  CAS  PubMed  Google Scholar 

  • Kelly MP. A role for PDE11A in the formation of social memories and the stabilization of mood. In: Xu J, Zhang H, O’Donnell JM, editors. Phosphodiesterases: CNS functions and diseases. Springer; in press.

    Google Scholar 

  • Kelly MP, Brandon NJ. Differential function of phosphodiesterase families in the brain: gaining insights through the use of genetically modified animals. Prog Brain Res. 2009;179:67–73. doi:10.1016/S0079-6123(09)17908-6.

    Article  CAS  PubMed  Google Scholar 

  • Kelly MP, Logue SF, Brennan J, Day JP, Lakkaraju S, Jiang L, et al. Phosphodiesterase 11A in brain is enriched in ventral hippocampus and deletion causes psychiatric disease-related phenotypes. Proc Natl Acad Sci U S A. 2010;107:8457–62. doi:10.1073/pnas.1000730107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly MP, Adamowicz W, Bove S, Hartman AJ, Mariga A, Pathak G, et al. Select 3′,5′-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. Cell Signal. 2014;26:383–97. doi:10.1016/j.cellsig.2013.10.007.

    Article  CAS  PubMed  Google Scholar 

  • Kelsoe J. Method to predict response to treatment for psychiatric illnesses. Oakland: The Regents of the University of California; 2010.

    Google Scholar 

  • Keravis T, Lugnier C. Cyclic nucleotide phosphodiesterases (PDE) and peptide motifs. Curr Pharm Des. 2010;16:1114–25.

    Article  CAS  PubMed  Google Scholar 

  • Khandaker GM, Pearson RM, Zammit S, Lewis G, Jones PB. Association of serum interleukin 6 and C-reactive protein in childhood with depression and psychosis in young adult life: a population-based longitudinal study. JAMA Psychiat. 2014;71:1121–8. doi:10.1001/jamapsychiatry.2014.1332.

    Article  Google Scholar 

  • Lakics V, Karran EH, Boess FG. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology. 2010;59(6):367–74.

    Article  CAS  PubMed  Google Scholar 

  • Libe R, Fratticci A, Coste J, Tissier F, Horvath A, Ragazzon B, et al. Phosphodiesterase 11A (PDE11A) and genetic predisposition to adrenocortical tumors. Clin Cancer Res. 2008;14:4016–24. doi:10.1158/1078-0432.CCR-08-0106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libe R, Horvath A, Vezzosi D, Fratticci A, Coste J, Perlemoine K, et al. Frequent phosphodiesterase 11A gene (PDE11A) defects in patients with Carney complex (CNC) caused by PRKAR1A mutations: PDE11A may contribute to adrenal and testicular tumors in CNC as a modifier of the phenotype. J Clin Endocrinol Metab. 2011;96:E208–14. doi:10.1210/jc.2010-1704.

    Article  CAS  PubMed  Google Scholar 

  • Lu JY, Sewer MB. p54nrb/NONO regulates cyclic AMP-dependent glucocorticoid production by modulating phosphodiesterase mRNA splicing and degradation. Mol Cell Biol. 2015;35:1223–37. doi:10.1128/MCB.00993-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukas M, Neumann ID. Oxytocin and vasopressin in rodent behaviors related to social dysfunctions in autism spectrum disorders. Behav Brain Res. 2013;251:85–94. doi:10.1016/j.bbr.2012.08.011.

    Article  CAS  PubMed  Google Scholar 

  • Luo HR, Wu GS, Dong C, Arcos-Burgos M, Ribeiro L, Licinio J, et al. Association of PDE11A global haplotype with major depression and antidepressant drug response. Neuropsychiatr Dis Treat. 2009;5:163–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maes M, Bosmans E, Calabrese J, Smith R, Meltzer HY. Interleukin-2 and interleukin-6 in schizophrenia and mania: effects of neuroleptics and mood stabilizers. J Psychiatr Res. 1995;29:141–52.

    Article  CAS  PubMed  Google Scholar 

  • Maes M, Bosmans E, De Jongh R, Kenis G, Vandoolaeghe E, Neels H. Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine. 1997;9:853–8. doi:10.1006/cyto.1997.0238.

    Article  CAS  PubMed  Google Scholar 

  • Makhlouf A, Kshirsagar A, Niederberger C. Phosphodiesterase 11: a brief review of structure, expression and function. Int J Impot Res. 2006;18:501–9. doi:10.1038/sj.ijir.3901441.

    Article  CAS  PubMed  Google Scholar 

  • Malhi GS, Tanious M, Das P, Coulston CM, Berk M. Potential mechanisms of action of lithium in bipolar disorder. Current understanding. CNS Drugs. 2013;27:135–53. doi:10.1007/s40263-013-0039-0.

    Article  PubMed  Google Scholar 

  • Marquis JP, Goulet S, Dore FY. Neonatal ventral hippocampus lesions disrupt extra-dimensional shift and alter dendritic spine density in the medial prefrontal cortex of juvenile rats. Neurobiol Learn Mem. 2008;90:339–46. doi:10.1016/j.nlm.2008.04.005.

    Article  PubMed  Google Scholar 

  • Matthiesen K, Nielsen J. Binding of cyclic nucleotides to phosphodiesterase 10A and 11A GAF domains does not stimulate catalytic activity. Biochem J. 2009;423:401–9. doi:10.1042/BJ20090982.

    Article  CAS  PubMed  Google Scholar 

  • Mertens J, Wang QW, Kim Y, Yu DX, Pham S, Yang B, et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature. 2015;527:95–9. doi:10.1038/nature15526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirabello L, Kratz CP, Savage SA, Greene MH. Promoter methylation of candidate genes associated with familial testicular cancer. Int J Mol Epidemiol Genet. 2012;3:213–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mori S, Tardito D, Dorigo A, Zanardi R, Smeraldi E, Racagni G, et al. Effects of lithium on cAMP-dependent protein kinase in rat brain. Neuropsychopharmacology. 1998;19:233–40. doi:10.1016/S0893-133X(98)00018-9.

    Article  CAS  PubMed  Google Scholar 

  • Moser MB, Moser EI. Functional differentiation in the hippocampus. Hippocampus. 1998;8:608–19.

    Article  CAS  PubMed  Google Scholar 

  • Neves SR, Ram PT, Iyengar R. G protein pathways. Science. 2002;296:1636–9. doi:10.1126/science.1071550.

    Article  CAS  PubMed  Google Scholar 

  • Niculescu AB, Levey DF, Phalen PL, Le-Niculescu H, Dainton HD, Jain N, et al. Understanding and predicting suicidality using a combined genomic and clinical risk assessment approach. Mol Psychiatry. 2015. doi:10.1038/mp.2015.112.

    Google Scholar 

  • Oki NO, Motsinger-Reif AA, Antas PR, Levy S, Holland SM, Sterling TR. Novel human genetic variants associated with extrapulmonary tuberculosis: a pilot genome wide association study. BMC Res Notes. 2011;4:28. doi:10.1186/1756-0500-4-28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papatheodoropoulos C, Kostopoulos G. Dorsal-ventral differentiation of short-term synaptic plasticity in rat CA1 hippocampal region. Neurosci Lett. 2000;286:57–60.

    Article  CAS  PubMed  Google Scholar 

  • Pathak A, Stewart DR, Faucz FR, Xekouki P, Bass S, Vogt A, et al. Rare inactivating PDE11A variants associated with testicular germ cell tumors. Endocr Relat Cancer. 2015;22:909–17. doi:10.1530/ERC-15-0034.

    Article  CAS  PubMed  Google Scholar 

  • Pathak G, Agostino MJ, Bishara K, Capell WR, Fisher JL, Hegde S, et al. PDE11A negatively regulates lithium responsivity. Mol Psychiatry. 2016. doi:10.1038/mp.2016.155.

    Google Scholar 

  • Perlis RH, Fijal B, Dharia S, Heinloth AN, Houston JP. Failure to replicate genetic associations with antidepressant treatment response in duloxetine-treated patients. Biol Psychiatry. 2010;67:1110–3. doi:10.1016/j.biopsych.2009.12.010.

    Article  CAS  PubMed  Google Scholar 

  • Peverelli E, Ermetici F, Filopanti M, Elli FM, Ronchi CL, Mantovani G, et al. Analysis of genetic variants of phosphodiesterase 11A in acromegalic patients. Eur J Endocrinol/Eur Fed Endocr Soc. 2009;161:687–94. doi:10.1530/EJE-09-0677.

    Article  CAS  Google Scholar 

  • Rahman S, Li PP, Young LT, Kofman O, Kish SJ, Warsh JJ. Reduced [3H]cyclic AMP binding in postmortem brain from subjects with bipolar affective disorder. J Neurochem. 1997;68:297–304.

    Article  CAS  PubMed  Google Scholar 

  • Roman F, Soumireu-Mourat B. Behavioral dissociation of anterodorsal and posteroventral hippocampus by subseizure stimulation in mice. Brain Res. 1988;443:149–58.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber G, Avissar S. Lithium sensitive G protein hyperfunction: a dynamic model for the pathogenesis of bipolar affective disorder. Med Hypotheses. 1991;35:237–43.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber G, Avissar S, Danon A, Belmaker RH. Hyperfunctional G proteins in mononuclear leukocytes of patients with mania. Biol Psychiatry. 1991;29:273–80.

    Article  CAS  PubMed  Google Scholar 

  • Simon NM, McNamara K, Chow CW, Maser RS, Papakostas GI, Pollack MH, et al. A detailed examination of cytokine abnormalities in major depressive disorder. Eur Neuropsychopharmacol. 2008;18:230–3. doi:10.1016/j.euroneuro.2007.06.004.

    Article  CAS  PubMed  Google Scholar 

  • Stoesz BM, Hare JF, Snow WM. Neurophysiological mechanisms underlying affiliative social behavior: insights from comparative research. Neurosci Biobehav Rev. 2013;37:123–32. doi:10.1016/j.neubiorev.2012.11.007.

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Young LT, Wang JF, Grof P, Turecki G, Rouleau GA, et al. Identification of lithium-regulated genes in cultured lymphoblasts of lithium responsive subjects with bipolar disorder. Neuropsychopharmacology. 2004;29:799–804. doi:10.1038/sj.npp.1300383.

    Article  CAS  PubMed  Google Scholar 

  • Tipton LA, Christensen L, Blacher J. Friendship quality in adolescents with and without an intellectual disability. J Appl Res Intellect Disabil. 2013;26:522–32. doi:10.1111/jar.12051.

    PubMed  Google Scholar 

  • Tseng KY, Lewis BL, Hashimoto T, Sesack SR, Kloc M, Lewis DA, et al. A neonatal ventral hippocampal lesion causes functional deficits in adult prefrontal cortical interneurons. J Neurosci. 2008;28:12691–9. doi:10.1523/JNEUROSCI.4166-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vezzosi D, Libe R, Baudry C, Rizk-Rabin M, Horvath A, Levy I, et al. Phosphodiesterase 11A (PDE11A) gene defects in patients with acth-independent macronodular adrenal hyperplasia (AIMAH): functional variants may contribute to genetic susceptibility of bilateral adrenal tumors. J Clin Endocrinol Metab. 2012;97:E2063–9. doi:10.1210/jc.2012-2275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viero C, Shibuya I, Kitamura N, Verkhratsky A, Fujihara H, Katoh A, et al. REVIEW: oxytocin: crossing the bridge between basic science and pharmacotherapy. CNS Neurosci Ther. 2010;16:e138–56. doi:10.1111/j.1755-5949.2010.00185.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Iga J, Nishi A, Numata S, Kinoshita M, Kikuchi K, et al. Microarray analysis of global gene expression in leukocytes following lithium treatment. Hum Psychopharmacol. 2014;29:190–8. doi:10.1002/hup.2381.

    Article  CAS  PubMed  Google Scholar 

  • Weeks 2nd JL, Zoraghi R, Francis SH, Corbin JD. N-terminal domain of phosphodiesterase-11A4 (PDE11A4) decreases affinity of the catalytic site for substrates and tadalafil, and is involved in oligomerization. Biochemistry. 2007;46:10353–64. doi:10.1021/bi7009629.

    Article  CAS  PubMed  Google Scholar 

  • Weeks 2nd JL, Corbin JD, Francis SH. Interactions between cyclic nucleotide phosphodiesterase 11 catalytic site and substrates or tadalafil and role of a critical Gln-869 hydrogen bond. J Pharmacol Exp Ther. 2009;331:133–41. doi:10.1124/jpet.109.156935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witwicka H, Kobialka M, Siednienko J, Mitkiewicz M, Gorczyca WA. Expression and activity of cGMP-dependent phosphodiesterases is up-regulated by lipopolysaccharide (LPS) in rat peritoneal macrophages. Biochim Biophys Acta. 2007;1773:209–18. doi:10.1016/j.bbamcr.2006.10.008.

    Article  CAS  PubMed  Google Scholar 

  • Wong ML, Whelan F, Deloukas P, Whittaker P, Delgado M, Cantor RM, et al. Phosphodiesterase genes are associated with susceptibility to major depression and antidepressant treatment response. Proc Natl Acad Sci U S A. 2006;103:15124–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Zhang HT, O’Donnell JM. Phosphodiesterases in the central nervous system: implications in mood and cognitive disorders. Handb Exp Pharmacol. 2011;447–85. doi:10.1007/978-3-642-17969-3_19.

    Google Scholar 

  • Yuasa K, Kotera J, Fujishige K, Michibata H, Sasaki T, Omori K. Isolation and characterization of two novel phosphodiesterase PDE11A variants showing unique structure and tissue-specific expression. J Biol Chem. 2000;275:31469–79. doi:10.1074/jbc.M003041200.

    Article  CAS  PubMed  Google Scholar 

  • Yuasa K, Kanoh Y, Okumura K, Omori K. Genomic organization of the human phosphodiesterase PDE11A gene. Evolutionary relatedness with other PDEs containing GAF domains. Eur J Biochem/FEBS. 2001a;268:168–78.

    Article  CAS  Google Scholar 

  • Yuasa K, Ohgaru T, Asahina M, Omori K. Identification of rat cyclic nucleotide phosphodiesterase 11A (PDE11A): comparison of rat and human PDE11A splicing variants. Eur J Biochem/FEBS. 2001b;268:4440–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Jennifer Klett for technical assistance with Fig. 2a, Baher Ibrahim for technical assistance with Fig. 2b, Neema Patel for technical assistance with Fig. 3b, and William Capell for technical assistance with Fig. 3c. This work was funded by 1R01MH101130 from NIMH and a NARSAD Young Investigator Award from the Brain & Behavior Research Foundation (all awards to MPK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michy P. Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this entry

Cite this entry

Kelly, M.P. (2016). PDE11A. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6438-9_101747-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6438-9_101747-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6438-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics