Skip to main content

Corticostriatal Circuitry

  • Living reference work entry
  • First Online:
Neuroscience in the 21st Century

Abstract

The cortico network plays a central role developing appropriate goal-directed behaviors, including the motivation and cognition to develop appropriate actions to obtain a specific outcome. Projections from cortex through basal ganglia structures are organized in a general topography. Thus, different regions of the striatum, pallidum, midbrain, and thalamus have been associated with these different functions: the ventral striatum, ventral pallidum, and ventral tegmental area with reward; the caudate nucleus, central pallidum, and substantia nigra with cognition; and the putamen, dorsal pallidum, and ventral substantia nigra with motor control. However, these connections are more complex and interactions between functional territories are extensive. These interactions occur in specific regions in which convergence of terminals fields from different functional cortical are found. This chapter reviews the connections through the cortico-basal ganglia network and their role in integrating information across reward, cognitive, and motor functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Haber SN, Behrens TE (2014) The neural network underlying incentive-based learning: implications for interpreting circuit disruptions in psychiatric disorders. Neuron 83:1019–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haber SNAA, Bergman H (2012) The basal ganglia. In: Mai K, Jurgen GP (eds) The human nervous system. Academic Press, New York, pp 680–740

    Google Scholar 

  • Parent A (1986) Comparative neurobiology of the basal ganglia. John Wiley, New York

    Google Scholar 

Further Readings

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    Article  CAS  PubMed  Google Scholar 

  • Cohen MX, Frank MJ (2009) Neurocomputational models of basal ganglia function in learning, memory and choice. Behav Brain Res 199:141–156

    Article  PubMed  Google Scholar 

  • Frank MJ (2005) When and when not to use your subthalamic nucleus: lessons from a computational model of the basal ganglia. In: Proceedings of the international joint conference on artificial intelligence: models of natural action selection, pp 53–60

    Google Scholar 

  • Friedman A, Daigo H, Gibb L, Amemori K-i, Rubin S, Hood A, Riad M, Graybiel A (2015) A corticostriatal path targeting striosomes controls decision-making under conflict. Cell 161:1320–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254

    Article  CAS  PubMed  Google Scholar 

  • Haber SN, Calzavara R (2009) The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull 78:69–74

    Article  PubMed  Google Scholar 

  • Haber SN, Knutson B (2010) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35:4–26

    Article  PubMed  Google Scholar 

  • Heimer L (2000) Basal forebrain in the context of schizophrenia. Brain Res Rev 31:205–235

    Article  CAS  PubMed  Google Scholar 

  • Heimer L, De Olmos JS, Alheid GF, Person J, Sakamoto N, Shinoda K, Marksteiner J, Switzer RC (1999) The human basal forebrain. Part II. In: Bloom FE, Bjorkland A, Hokfelt T (eds) Handbook of chemical neuroanatomy. Elsevier, Amsterdam, pp 57–226

    Google Scholar 

  • Jones EG (1998) The thalamus of primates. In: Bloom FE, Björklund A, Hökfelt T (eds) The primate nervous system, Part II. Amsterdam, Elsevier Science, pp 1–298

    Chapter  Google Scholar 

  • Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35:217–238

    Article  PubMed  Google Scholar 

  • Matsumoto M, Hikosaka O (2007) Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447:1111–1115

    Article  CAS  PubMed  Google Scholar 

  • Moss J, Bolam JP (2008) A dopaminergic axon lattice in the striatum and its relationship with cortical and thalamic terminals. J Neurosci 28:11221–11230

    Article  CAS  PubMed  Google Scholar 

  • Parent A (1990) Extrinsic connections of the basal ganglia. Trends Neurosci 13:254–258

    Article  CAS  PubMed  Google Scholar 

  • Power JD, Schlaggar BL, Lessov-Schlaggar CN, Petersen SE (2013) Evidence for hubs in human functional brain networks. Neuron 79:798–813

    Article  CAS  PubMed  Google Scholar 

  • Rushworth MF, Noonan MP, Boorman ED, Walton ME, Behrens TE (2011) Frontal cortex and reward-guided learning and decision-making. Neuron 70:1054–1069

    Article  CAS  PubMed  Google Scholar 

  • Schultz W (2010) Dopamine signals for reward value and risk: basic and recent data. Behav Brain Funct 6:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5:776–794

    CAS  PubMed  Google Scholar 

  • Sherman SM, Guillery RW (1996) Functional organization of thalamocortical relays. J Neurophysiol 76:1367–1395

    CAS  PubMed  Google Scholar 

  • Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86:353–387

    Article  CAS  PubMed  Google Scholar 

  • Wilson CJ (2004) The basal ganglia. In: Shepherd GM (ed) Synaptic organization of the brain. Oxford University Press, New York, pp 361–413

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant MH045573.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne N. Haber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Haber, S.N. (2016). Corticostriatal Circuitry. In: Pfaff, D., Volkow, N. (eds) Neuroscience in the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6434-1_135-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6434-1_135-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6434-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics