Skip to main content

Improved Multipolar Hardy Inequalities

  • Chapter
  • First Online:
Studies in Phase Space Analysis with Applications to PDEs

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 84))

Abstract

In this paper we prove optimal Hardy-type inequalities for Schrödinger operators with positive multi-singular inverse square potentials of the form

$$A_{\lambda } := -\Delta- \lambda \displaystyle\sum _{1\leq i<j\leq n} \frac{\vert x_{i} - x_{j}{\vert }^{2}} {\vert x - x_{i}{\vert }^{2}\vert x - x_{j}{\vert }^{2}},\quad \lambda> 0.$$

More precisely, we show that A λ is nonnegative in the sense of L 2 quadratic forms in \({\mathbb{R}}^{N}\), if and only if \(\lambda\leq{(N - 2)}^{2}/{n}^{2}\), independently of the number n and location of the singularities \(x_{i} \in{\mathbb{R}}^{N}\), where N ≥ 3 denotes the space dimension. This aims to complement some of the results in Bosi et al. (Comm. Pure Appl. Anal. 7:533–562, 2008) obtained by the “expansion of the square” method. Due to the interaction of poles, our optimal result provides a singular quadratic potential behaving like \((n - 1){(N - 2)}^{2}/({n}^{2}\vert x - x_{i}{\vert }^{2})\) at each pole x i . Besides, the authors in Bosi et al. (Comm. Pure Appl. Anal. 7:533–562, 2008) showed optimal Hardy inequalities for Schrödinger operators with a finite number of singular poles of the type \(B_{\lambda } := -\Delta-\sum _{i=1}^{n}\lambda /\vert x - x_{i}{\vert }^{2}\), up to lower order L 2-reminder terms. By means of the optimal results obtained for A λ, we also build some examples of bounded domains Ω in which these lower order terms can be removed in H 0 1(Ω). In this way we obtain new lower bounds for the optimal constant in the standard multi-singular Hardy inequality for the operator B λ in bounded domains. The best lower bounds are obtained when the singularities x i are located on the boundary of the domain.

2010 Mathematics Subject Classification: 35J10, 26D10, 46E35, 35Q40, 35J75.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adimurthi: Best constants and Pohozaev identity for Hardy-Sobolev type operators, to appear in Communications in Contemporary Mathematics

    Google Scholar 

  2. Adimurthi, Sandeep, K.: Existence and non-existence of the first eigenvalue of the perturbed Hardy-Sobolev operator. Proc. Roy. Soc. Edinburgh Sect. A 132, 1021–1043 (2002)

    Google Scholar 

  3. Adimurthi, Sekar, A.: Role of the fundamental solution in Hardy-Sobolev-type inequalities. Proc. Roy. Soc. Edinburgh Sect. A 136, 1111–1130 (2006)

    Google Scholar 

  4. Azorero, J.G., Peral, I.: Hardy inequalities and some critical elliptic and parabolic problems. J. Differ. Equat. 144, 441–476 (1998)

    Article  MATH  Google Scholar 

  5. Barbatis, G., Filippas, S., Tertikas, A.: A unified approach to improved L p Hardy inequalities with best constants. Trans. Am. Math. Soc. 356, 2169–2196 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berestycki, H., Esteban, M.J.: Existence and bifurcation of solutions for an elliptic degenerate problem. J. Different. Equat. 134, 1–25 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bosi, R., Dolbeault, J., Esteban, M.J.: Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators. Comm. Pure Appl. Anal. 7, 533–562 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezis, H., Vázquez, J.L.: Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Complut. Madrid 10, 443–469 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compos. Math. 53, 259–275 (1984)

    MathSciNet  MATH  Google Scholar 

  10. Catto, I., Le Bris, C., Lions, P.-L.: On the thermodynamic limit for Hartree-Fock type models. Ann. Inst. H. Poincaré Anal. Non Linéaire 18, 687–760 (2001)

    Article  MATH  Google Scholar 

  11. Cazacu, C.: On Hardy inequalities with singularities on the boundary. C. R. Acad. Sci. Paris, Ser. I, 349, 273–277 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Dolbeault, J., Duoandikoetxea, J., Esteban, M.J., Vega, L.: Hardy-type estimates for Dirac operators. Ann. Sci. École Norm. Sup. (4) 40, 885–900 (2007)

    Google Scholar 

  13. Duyckaerts, T.: A singular critical potential for the Schrödinger operator. Can. Math. Bull. 50, 35–47 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duyckaerts, T.: Inégalités de résolvante pour l’opérateur de Schrödinger avec potentiel multipolaire critique. Bull. Soc. Math. Fr. 134, 201–239 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC, Boca Raton (1992)

    MATH  Google Scholar 

  16. Felli, V., Marchini, E.M., Terracini, S.: On Schrödinger operators with multipolar inverse-square potentials. J. Funct. Anal. 250, 265–316 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Felli, V., Terracini, S.: Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity. Comm. Part. Differ. Equat. 31, 469–495 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Felli, V., Terracini, S.: Nonlinear Schrödinger equations with symmetric multi-polar potentials. Calc. Var. Part. Differ. Equat. 27, 25–58 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Filippas, S., Mazya, V., Tertikas, A.: On a question of Brezis and Marcus. Calc. Var. Part. Differ. Equat. 25, 491–501 (2006)

    Google Scholar 

  20. Frank, W.M., Land, D.J., Spector, R.M.: Singular potentials. Rev. Modern Phys. 43, 36–98 (1971)

    Article  MathSciNet  Google Scholar 

  21. Gelfand, I.M.: Some problems in the theory of quasi-linear equations. Uspehi Mat. Nauk 14, 87–158 (1959)

    Google Scholar 

  22. Hardy, G.H.: An inequality between integrals. Messenger Math. 54, 150–156 (1925)

    Google Scholar 

  23. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  24. Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Laptev, A., Tidblom, J.: Many-particle Hardy inequalities. J. Lond. Math. Soc. (2) 77, 99–114 (2008)

    Google Scholar 

  25. Krejčiřík, D., Zuazua, E.: The Hardy inequality and the heat equation in twisted tubes. J. Math. Pures Appl. (9) 94, 277–303 (2010)

    Google Scholar 

  26. Lévy-Leblond, J.M.: Electron capture by polar molecules. Phys. Rev. 153, 1–4 (1967)

    Article  Google Scholar 

  27. Morgan, J.D.: Schrödinger operators whose operators have separated singularities. J. Operat. Theor. 1, 109–115 (1979)

    MATH  Google Scholar 

  28. Simon, B.: Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions. Ann. Inst. H. Poincaré Sect. A (N.S.) 38, 295–308 (1983)

    Google Scholar 

  29. Tertikas, A.: Critical phenomena in linear elliptic problems. J. Funct. Anal. 154, 42–66 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tintarev, K., Fieseler, K.H.: Concentration Compactness. Imperial College Press, London (2007)

    MATH  Google Scholar 

  31. Vázquez, J.L., Zuazua, E.: The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential. J. Funct. Anal. 173, 103–153 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Partially supported by the Grant MTM2011-29306-C02-00 of the MICINN (Spain), project PI2010-04 of the Basque Government, the ERC Advanced Grant FP7-246775 NUMERIWAVES, the ESF Research Networking Program OPTPDE, the grant PN-II-ID-PCE-2011-3-0075 of CNCS-UEFISCDI Romania, and a doctoral fellowship from UAM (Universidad Autónoma de Madrid)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Cazacu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cazacu, C., Zuazua, E. (2013). Improved Multipolar Hardy Inequalities. In: Cicognani, M., Colombini, F., Del Santo, D. (eds) Studies in Phase Space Analysis with Applications to PDEs. Progress in Nonlinear Differential Equations and Their Applications, vol 84. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-6348-1_3

Download citation

Publish with us

Policies and ethics