Skip to main content

Anti-cytokine Agents to Combat Oxidative Stress

  • Chapter
  • First Online:
Studies on Arthritis and Joint Disorders

Abstract

Oxidative stress induced by reactive oxygen species (ROS) is a key underlying mechanism of destructive and proliferative synovitis in rheumatoid arthritis (RA). Abundant ROS have been detected in the synovial fluid of inflamed joints. ROS are also important mediators of cardiovascular degeneration. Patients with RA have a higher risk for cardiovascular events. Recent studies reported the significant suppression of ROS and oxidative stress in the serum of patients with RA by biologics targeting the cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6. Indeed, serum ROS levels in patients with RA treated with an IL-6-blocking drug are significantly suppressed. Therapy blocking IL-1 also suppresses oxidative stress-induced changes in tissues of patients with RA. Taken together, these findings suggest that anti-cytokine therapies may not only reduce joint damage but vascular degeneration in patients with RA. Given that recent reports have pointed to the beneficial effects of anti-cytokine agents on cardiovascular degeneration, the observed beneficial effects in RA may rely in part on the reduction of oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGE:

Advanced glycation end products

CAVI:

Cardio-ankle vascular index

CFR:

Coronary flow reserve

CRP:

C-reactive protein

DMARDs:

Disease-modifying antirheumatic drugs

ET:

Endothelin

FMD:

Flow-mediated dilatation

FN:

Interferon

IL:

Interleukin

LDL:

Low-density lipoprotein

MMP:

Matrix metalloproteinases

MMR:

Mismatch repair

mtDNA:

Mitochondrial DNA

MTX:

Methotrexate

NAC:

N-acetylcysteine

NO:

Nitric oxide

O2 :

Superoxide

OA:

Osteoarthritis

·HO:

Hydroxyl radicals

ONOO :

Peroxynitrite

RA:

Rheumatoid arthritis

RNS:

Reactive nitrogen species

ROM:

Reactive oxygen metabolites

ROS:

Reactive oxygen species

TNF:

Tumor necrosis factor

References

  1. Mapp PI, Grootveld MC, Blake DR (1995) Hypoxia, oxidative stress, and rheumatoid arthritis. Br Med Bull 51:419–436

    CAS  PubMed  Google Scholar 

  2. Hitchon CA, El-Gabalawy H (2004) Oxidation in rheumatoid arthritis. Arthritis Res Ther 6:265–278

    Article  PubMed  Google Scholar 

  3. Halliwell B (1995) Oxygen radicals, nitric oxide, and human inflammatory joint disease. Ann Rheum Dis 54:505–510

    Article  CAS  PubMed  Google Scholar 

  4. Tak PP, Zvaifler NJ, Grenn DR, Firestein GS (2000) Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases. Immunol Today 21:78–82

    Article  CAS  PubMed  Google Scholar 

  5. Del Rincon I, Williams K, Stern MP, Freeman GL, Escalante A (2001) High incidence of cardiovascular events in a rheumatoid arthritis cohort not explained by traditional cardiac risk factors. Arthritis Rheum 44:2737–2745

    Article  PubMed  Google Scholar 

  6. Pap T, Muller-Ladner U, Gay RE, Gay S (2009) Fibroblast biology: role of synovial fibroblasts in the pathogenesis of rheumatoid arthritis. Arthritis Res 2:361–367

    Article  Google Scholar 

  7. Grootveld M, Henderson EB, Farrell A, Blake DR, Parkes HG, Haycock P (1991) Oxidative damage to hyaluronate and glucose in synovial fluid during exercise of the inflamed rheumatoid joint. Detection of abnormal low-molecular-mass metabolites by proton-n.m.r. spectroscopy. Biochem J 273:459–467

    CAS  PubMed  Google Scholar 

  8. Rowley D, Gutteridge JM, Blake D, Farr M, Halliwell B (1984) Lipid peroxidation in rheumatoid arthritis: thiobarbituric acid-reactive material and catalytic iron salts in synovial fluid from rheumatoid patients. Clin Sci (Lond) 66:691–695

    CAS  Google Scholar 

  9. Taysi S, Polat F, Gul M, Sari RA, Bakan E (2002) Lipid peroxidation, some extracellular antioxidants, and antioxidant enzymes in serum of patients with rheumatoid arthritis. Rheumatol Int 21:200–204

    Article  CAS  PubMed  Google Scholar 

  10. Dai L, Lamb DJ, Leake DS et al (2000) Evidence for oxidised low density lipoprotein in synovial fluid from rheumatoid arthritis patients. Free Radic Res 32:479–486

    Article  CAS  PubMed  Google Scholar 

  11. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38

    Article  CAS  PubMed  Google Scholar 

  12. Lusis AJ (2000) Atherosclerosis. Nature 407:233–241

    Article  CAS  PubMed  Google Scholar 

  13. Del Rincon I, Escalante A (2003) Atherosclerotic cardiovascular disease in rheumatoid arthritis. Curr Rheumatol Rep 5:278–286

    Article  PubMed  Google Scholar 

  14. Sattar N, McCarey DW, Capell H, McInnes IB (2003) Explaining how ‘high-grade’ systemic inflammation accelerates vascular risk in rheumatoid arthritis. Circulation 108:2957–2963

    Article  PubMed  Google Scholar 

  15. Winyard PG, Tatzber F, Esterbauer H, Kus ML, Blake DR, Morris CJ (1993) Presence of foam cells containing oxidised low density lipoprotein in the synovial membrane from patients with rheumatoid arthritis. Ann Rheum Dis 52:677–680

    Article  CAS  PubMed  Google Scholar 

  16. Clancy RM, Rediske J, Tang X et al (1997) Outside-in signaling in the chondrocyte. Nitric oxide disrupts fibronectin-induced assembly of a subplasmalemmal actin/rho A/focal adhesion kinase signaling complex. J Clin Invest 100:1789–1796

    Article  CAS  PubMed  Google Scholar 

  17. Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94:514–519

    Article  CAS  PubMed  Google Scholar 

  18. Rees MD, Hawkins CL, Davies MJ (2003) Hypochlorite-mediated fragmentation of hyaluronan, chondroitin sulfates, and related N-acetyl glycosamines: evidence for chloramide intermediates, free radical transfer reactions, and site-specific fragmentation. J Am Chem Soc 125:13719–13733

    Article  CAS  PubMed  Google Scholar 

  19. Rees MD, Hawkins CL, Davies MJ (2004) Hypochlorite and superoxide radicals can act synergistically to induce fragmentation of hyaluronan and chondroitin sulfates. Biochem J 381:175–184

    Article  CAS  PubMed  Google Scholar 

  20. Panasyuk A, Frati E, Ribault D, Mitrovic D (1994) Effect of reactive oxygen species on the biosynthesis and structure of newly synthesized proteoglycans. Free Radic Biol Med 16:157–167

    Article  CAS  PubMed  Google Scholar 

  21. Bashir S, Harris G, Denman MA, Blake DR, Winyard PG (1993) Oxidative DNA damage and cellular sensitivity to oxidative stress in human autoimmune diseases. Ann Rheum Dis 52:659–666

    Article  CAS  PubMed  Google Scholar 

  22. Hajizadeh S, DeGroot J, TeKoppele JM, Tarkowski A, Collins LV (2003) Extracellular mitochondrial DNA and oxidatively damaged DNA in synovial fluid of patients with rheumatoid arthritis. Arthritis Res Ther 5:R234–R240

    Article  CAS  PubMed  Google Scholar 

  23. Lee SH, Chang DK, Goel A et al (2003) Microsatellite instability and suppressed DNA repair enzyme expression in rheumatoid arthritis. J Immunol 170:2214–2220

    CAS  PubMed  Google Scholar 

  24. Forrester K, Ambs S, Lupold SE et al (1996) 276 Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci USA 93:2442–2447

    Article  CAS  PubMed  Google Scholar 

  25. Firestein GS, Echeverri F, Yeo M, Zvaifler NJ, Green DR (1997) Somatic mutations in the p53 tumor suppressor gene in rheumatoid arthritis synovium. Proc Natl Acad Sci USA 94:10895–10900

    Article  CAS  PubMed  Google Scholar 

  26. Inazuka M, Tahira T, Horiuchi T et al (2000) Analysis of p53 tumour suppressor gene somatic mutations in rheumatoid arthritis synovium. Rheumatology (Oxford) 39:262–266

    Article  CAS  Google Scholar 

  27. Tak PP, Zvaifler NJ, Green DR, Firestein GS (2000) Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases. Immunol Today 21:78–82

    Article  CAS  PubMed  Google Scholar 

  28. Yamanishi Y, Boyle DL, Rosengren S, Green DR, Zvaifler NJ, Firestein GS (2002) Regional analysis of p53 mutations in rheumatoid arthritis synovium. Proc Natl Acad Sci USA 99:10025–10030

    Article  CAS  PubMed  Google Scholar 

  29. Collins LV, Hajizadeh S, Holme E, Jonsson IM, Tarkowski A (2004) Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J Leukoc Biol 75:995–1000

    Article  CAS  PubMed  Google Scholar 

  30. Shahab U, Ahmad S, Moinuddin et al (2012) Hydroxyl radical modification of collagen type II increases its arthritogenicity and immunogenicity. PLoS One 7:e31199

    Article  CAS  PubMed  Google Scholar 

  31. Cemerski S, van Meerwijk JP, Romagnoli P (2003) Oxidative-stress-induced T lymphocyte hyporesponsiveness is caused by structural modification rather than proteasomal degradation of crucial TCR signaling molecules. Eur J Immunol 33:2178–2185

    Article  CAS  PubMed  Google Scholar 

  32. Bandt MD, Grossin M, Driss F, Pincemail J, Babin-Chevaye C, Pasquier C (2002) Vitamin E uncouples joint destruction and clinical inflammation in a transgenic mouse model of rheumatoid arthritis. Arthritis Rheum 46:522–532

    Article  PubMed  Google Scholar 

  33. Cuzzocrea S, McDonald MC, Mota-Filipe H et al (2000) Beneficial effects of tempol, a membrane-permeable radical scavenger, in a rodent model of collagen-induced arthritis. Arthritis Rheum 43:320–328

    Article  CAS  PubMed  Google Scholar 

  34. Venkatraman JT, Chu WC (1999) Effects of dietary omega-3 and omega-6 lipids and vitamin E on serum cytokines, lipid mediators and anti-DNA antibodies in a mouse model for rheumatoid arthritis. J Am Coll Nutr 18:602–613

    Article  CAS  PubMed  Google Scholar 

  35. Biemond P, Swaak AJ, Koster JF (1984) Protective factors against oxygen free radicals and hydrogen peroxide in rheumatoid arthritis synovial fluid. Arthritis Rheum 27:760–765

    Article  CAS  PubMed  Google Scholar 

  36. De Leo ME, Tranghese A, Passantino M et al (2002) Manganese superoxide dismutase, glutathione peroxidase, and total radical trapping antioxidant capacity in active rheumatoid arthritis. J Rheumatol 29:2245–2246

    PubMed  Google Scholar 

  37. Cimen MY, Cimen OB, Kacmaz M, Ozturk HS, Yorgancioglu R, Durak I (2000) Oxidant/antioxidant status of the erythrocytes from patients with rheumatoid arthritis. Clin Rheumatol 19:275–277

    Article  CAS  PubMed  Google Scholar 

  38. Marklund SL, Bjelle A, Elmqvist LG (1986) Superoxide dismutase isoenzymes of the synovial fluid in rheumatoid arthritis and in reactive arthritides. Ann Rheum Dis 45:847–851

    Article  CAS  PubMed  Google Scholar 

  39. Ozturk HS, Cimen MY, Cimen OB, Kacmaz M, Durak I (1999) Oxidant/antioxidant status of plasma samples from patients with rheumatoid arthritis. Rheumatol Int 19:35–37

    Article  CAS  PubMed  Google Scholar 

  40. Cerhan JR, Saag KG, Merlino LA, Mikuls TR, Criswell LA (2003) Antioxidant micronutrients and risk of rheumatoid arthritis in a cohort of older women. Am J Epidemiol 157:345–354

    Article  PubMed  Google Scholar 

  41. Heliovaara M, Knekt P, Aho K, Aaran RK, Alfthan G, Aromaa A (1994) Serum antioxidants and risk of rheumatoid arthritis. Ann Rheum Dis 53:51–53

    Article  CAS  PubMed  Google Scholar 

  42. Hagfors L, Leanderson P, Skoldstam L, Andersson J, Johansson G (2003) Antioxidant intake, plasma antioxidants and oxidative stress in a randomized, controlled, parallel, Mediterranean dietary intervention study on patients with rheumatoid arthritis. Nutr J 2:5

    Article  PubMed  Google Scholar 

  43. Bae SC, Kim SJ, Sung MK (2003) Inadequate antioxidant nutrient intake and altered plasma antioxidant status of rheumatoid arthritis patients. J Am Coll Nutr 22:311–315

    CAS  PubMed  Google Scholar 

  44. Paredes S, Girona J, Hurt-Camejo E et al (2002) Antioxidant vitamins and lipid peroxidation in patients with rheumatoid arthritis: association with inflammatory markers. J Rheumatol 29:2271–2277

    CAS  PubMed  Google Scholar 

  45. Mulherin DM, Thurnham DI, Situnayake RD (1996) Glutathione reductase activity, riboflavin status, and disease activity in rheumatoid arthritis. Ann Rheum Dis 55:837–840

    Article  CAS  PubMed  Google Scholar 

  46. Newkirk MM, LePage K, Niwa T, Rubin L (1998) Advanced glycation endproducts (AGE) on IgG, a target for circulating antibodies in North American Indians with rheumatoid arthritis (RA). Cell Mol Biol (Noisy-le-grand) 44:1129–1138

    CAS  Google Scholar 

  47. Newkirk MM, Goldbach-Mansky R, Lee J et al (2003) Advanced glycation endproduct (AGE)-damaged IgG and IgM autoantibodies to IgGAGE in patients with early synovitis. Arthritis Res Ther 5:R82–R90

    Article  CAS  PubMed  Google Scholar 

  48. Nathan C, Shiloh MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 97:8841–8848

    Article  CAS  PubMed  Google Scholar 

  49. Rice-Evans CA, Gopinathan V (1995) Oxygen toxicity, free radicals and antioxidants in human disease: biochemical implications in atherosclerosis and the problems of premature neonates. Essays Biochem 29:39–63

    CAS  PubMed  Google Scholar 

  50. Schulze-Osthoff K, Beyaert R, Vandevoorde V, Haegeman G, Fiers W (1993) Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene inductive effects of TNF. EMBO J 12:3095–3104

    CAS  PubMed  Google Scholar 

  51. Corda S, Laplace C, Vicaut E, Duranteau J (2001) Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis factor-alpha is mediated by ceramide. Am J Respir Cell Mol Biol 24:762–768

    Article  CAS  PubMed  Google Scholar 

  52. Woo CH, Kim TH, Choi JA et al (2006) Inhibition of receptor internalization attenuates the TNF alpha-induced ROS generation in non-phagocytic cells. Biochem Biophys Res Commun 351:972–978

    Article  CAS  PubMed  Google Scholar 

  53. Sakon S, Xue X, Takekawa M et al (2003) NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 22:3898–3909

    Article  CAS  PubMed  Google Scholar 

  54. Baskol G, Demir H, Baskol M et al (2006) Investigation of protein oxidation and lipid peroxidation in patients with rheumatoid arthritis. Cell Biochem Funct 24:307–311

    Article  CAS  PubMed  Google Scholar 

  55. Kaur H, Halliwell B (1994) Evidence for nitric oxide-mediated oxidative damage in chronic inflammation: nitrotyrosine in serum and synovial fluid from rheumatoid patients. FEBS Lett 350:9–12

    Article  CAS  PubMed  Google Scholar 

  56. Kaplan MJ (2006) Cardiovascular disease in rheumatoid arthritis. Curr Opin Rheumatol 18:289–297

    Article  CAS  PubMed  Google Scholar 

  57. Dinarello CA (1991) Interleukin-1 and interleukin-1 antagonism. Blood 77:1627–1652

    CAS  PubMed  Google Scholar 

  58. Sironi M, Brevario F, Prosperio A et al (1989) IL-1 stimulates IL-6 production in endothelial cells. J Immunol 142:549–553

    CAS  PubMed  Google Scholar 

  59. Corder R, Carrier M, Khan N, Klemm P, Vane JR (1995) Cytokine regulation of endothelin-1 release from bovine aortic endothelial cells. J Cardiovasc Pharmacol 26:S56–S58

    CAS  PubMed  Google Scholar 

  60. Takahashi T, Nishizawa Y, Hato F et al (2007) Neutrophil-activating activity and platelet-activating factor synthesis in cytokine-stimulated endothelial cells: reduced activity in growth-arrested cells. Microvasc Res 73:29–34

    Article  CAS  PubMed  Google Scholar 

  61. Espey MG, Miranda KM, Pluta RM, Wink DA (2000) Nitrosative capacity of macrophages is dependent on nitric-oxide synthase induction signals. J Biol Chem 275:11341–11347

    Article  CAS  PubMed  Google Scholar 

  62. Peluffo G, Radi R (2007) Biochemistry of protein tyrosine nitration in cardiovascular pathology. Cardiovasc Res 75:291–302

    Article  CAS  PubMed  Google Scholar 

  63. Haruna Y, Morita Y, Komai N et al (2006) Endothelial dysfunction in rat adjuvant-induced arthritis: vascular superoxide production by NAD(P)H oxidase and uncoupled endothelial nitric oxide synthase. Arthritis Rheum 54:1847–1855

    Article  CAS  PubMed  Google Scholar 

  64. Pearl-Yafe M, Halperin D, Halevy A, Kalir H, Bielorai B, Fabian I (2003) An oxidative mechanism of interferon induced priming of the Fas pathway in Fanconi anemia cells. Biochem Pharmacol 65:833–842

    Article  CAS  PubMed  Google Scholar 

  65. Pearl-Yafe M, Halperin D, Scheuerman O, Fabian I (2004) The p38 pathway partially mediates caspase-3 activation induced by reactive oxygen species in Fanconi anemia C cells. Biochem Pharmacol 67:539–546

    Article  CAS  PubMed  Google Scholar 

  66. Watanabe Y, Suzuki O, Haruyama T, Akaike T (2003) Interferon-gamma induces reactive oxygen species and endoplasmic reticulum stress at the hepatic apoptosis. J Cell Biochem 89:244–253

    Article  CAS  PubMed  Google Scholar 

  67. Sung JY, Hong JH, Kang HS et al (2000) Methotrexate suppresses the interleukin-6 induced generation of reactive oxygen species in the synoviocytes of rheumatoid arthritis. Immunopharmacology 47:35–44

    Article  CAS  PubMed  Google Scholar 

  68. Kageyama Y, Takahashi M, Ichikawa T, Torikai E, Nagano A (2008) Reduction of oxidative stress marker levels by anti-TNF-alpha antibody, infliximab, in patients with rheumatoid arthritis. Clin Exp Rheumatol 261:73–80

    Google Scholar 

  69. Kageyama Y, Takahashi M, Nagafusa T, Torikai E, Nagano A (2008) Etanercept reduces the oxidative stress marker levels in patients with rheumatoid arthritis. Rheumatol Int 28:245–251

    Article  CAS  PubMed  Google Scholar 

  70. Hirao M, Yamasaki N, Oze H et al (2011) Serum level of oxidative stress marker is dramatically low in patients with rheumatoid arthritis treated with tocilizumab. Rheumatol Int 32(12):4041–4045 (Epub 2011 Sep 11)

    Google Scholar 

  71. Agarwal S, Sohal RS (1994) Aging and protein oxidative damage. Mech Ageing Dev 75:11–19

    Article  CAS  PubMed  Google Scholar 

  72. Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922

    Article  CAS  PubMed  Google Scholar 

  73. Hybertson BM, Lee YM, Cho HG, Cho OJ, Repine JE (2000) Alveolar type II cell abnormalities and peroxide formation in lungs of rats given IL-1 intratracheally. Inflammation 24:289–303

    Article  CAS  PubMed  Google Scholar 

  74. Lacraz G, Giroix MH, Kassis N et al (2009) Islet endothelial activation and oxidative stress gene expression is reduced by IL-1Ra treatment in the type 2 diabetic GK rat. PLoS One 4:e6963

    Article  PubMed  Google Scholar 

  75. Jacobsson LT, Turesson C, Hanson RL et al (2001) Joint swelling as a predictor of death from cardiovascular disease in a population study of Pima Indians. Arthritis Rheum 44:1170–1176

    Article  CAS  PubMed  Google Scholar 

  76. Van Doornum S, McColl G, Wicks IP (2002) Accelerated atherosclerosis: an extraarticular feature of rheumatoid arthritis? Arthritis Rheum 46:862–873

    Article  PubMed  Google Scholar 

  77. Kobayashi K, Akishita M, Yu W, Hashimoto M, Ohni M, Toba K (2004) Interrelationship between non-invasive measurements of atherosclerosis: flow-mediated dilation of brachial artery, carotid intima-media thickness, and pulse wave velocity. Atherosclerosis 173:13–18

    Article  CAS  PubMed  Google Scholar 

  78. O’Leary DH, Polak JF, Kronmal RA et al (1999) Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. N Engl J Med 340:14–22

    Article  PubMed  Google Scholar 

  79. Boutouyrie P, Tropeano AI, Asmar R et al (2002) Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension 39:10–15

    Article  CAS  PubMed  Google Scholar 

  80. Del Porto F, Lagana B, Lai S et al (2007) Response to anti-tumour necrosis factor alpha blockade is associated with reduction of carotid intima-media thickness in patients with active rheumatoid arthritis. Rheumatology 46:1111–1115

    Article  PubMed  Google Scholar 

  81. Goodson N, Marks J, Lunt M, Symmons D (2005) Cardiovascular admissions and mortality in an inception cohort of patients with rheumatoid arthritis with onset in the 1980s and 1990s. Ann Rheum Dis 64:1595–1601

    Article  CAS  PubMed  Google Scholar 

  82. Angel K, Provan SA, Gulseth HL, Mowinckel P, Kvien TK, Atar D (2010) Tumor necrosis factor-a antagonists improve aortic stiffness in patients with inflammatory arthropathies: a controlled study. Hypertension 55:333–338

    Article  CAS  PubMed  Google Scholar 

  83. Wong M, Oakley SP, Young L et al (2009) Infliximab improves vascular stiffness in patients with rheumatoid arthritis. Ann Rheum Dis 68:1277–1284

    Article  CAS  PubMed  Google Scholar 

  84. Jacobsson LT, Turesson C, Nilsson JA et al (2007) Treatment with TNF blockers and mortality risk in patients with rheumatoid arthritis. Ann Rheum Dis 66:670–675

    Article  PubMed  Google Scholar 

  85. Jacobsson LT, Turesson C, Gulfe A et al (2005) Treatment with tumor necrosis factor blockers is associated with a lower incidence of first cardiovascular events in patients with rheumatoid arthritis. J Rheumatol 32:1213–1218

    CAS  PubMed  Google Scholar 

  86. Greenberg J, Lin S, Decktor D et al (2006) Association of duration of TNF antagonist treatment with reduction in cardiovascular outcomes in RA patients. Arthritis Rheum 54(9 Suppl):422

    Google Scholar 

  87. Pasceri V, Yeh ET (1999) A tale of two diseases: atherosclerosis and rheumatoid arthritis. Circulation 100:2124–2126

    Article  CAS  PubMed  Google Scholar 

  88. Dixon WG, Symmons DP (2007) What effects might anti-TNFalpha treatment be expected to have on cardiovascular morbidity and mortality in rheumatoid arthritis? A review of the role of TNFalpha in cardiovascular pathophysiology. Ann Rheum Dis 66:1132–1136

    Article  CAS  PubMed  Google Scholar 

  89. Ridker PM, Rifai N, Stampfer MJ, Hennekens CH (2000) Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101:1767–1772

    Article  CAS  PubMed  Google Scholar 

  90. Danesh J, Kaptoge S, Mann AG et al (2008) Long-term interleukin-6 levels and subsequent risk of coronary heart disease: two new prospective studies and a systematic review. PLoS Med 5:e78

    Article  PubMed  Google Scholar 

  91. Sattar N, Murray HM, Welsh P et al (2009) Are markers of inflammation more strongly associated with risk for fatal than for nonfatal vascular events? PLoS Med 6:e1000099

    Article  PubMed  Google Scholar 

  92. Kume K, Amano K, Yamada S, Hatta K, Ohta H, Kuwaba N (2011) Tocilizumab monotherapy reduces arterial stiffness as effectively as etanercept or adalimumab monotherapy in rheumatoid arthritis: an open-label randomized controlled trial. J Rheumatol 10:2169–2171

    Article  Google Scholar 

  93. The Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium (2012) The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet 379(9822):1214–1224

    Article  Google Scholar 

  94. IL6R Genetics Consortium Emerging Risk Factors Collaboration (2012) Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet 379(9822):1205–1213

    Article  Google Scholar 

  95. Ikonomidis I, Lekakis JP, Nikolaou M et al (2008) Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation 117:2662–2669

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihiro Nishimoto M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hirao, M., Hashimoto, J., Nishimoto, N. (2013). Anti-cytokine Agents to Combat Oxidative Stress. In: Alcaraz, M., Gualillo, O., Sánchez-Pernaute, O. (eds) Studies on Arthritis and Joint Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-6166-1_16

Download citation

Publish with us

Policies and ethics