Skip to main content

Introduction to Finite Element Analysis

  • Chapter
  • First Online:
Plasticity

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 9))

Abstract

In the previous two chapters we have formulated and analyzed the primal and dual variational formulations of the elastoplasticity problem. Later on, we will study various numerical methods to solve the variational problems. In all the numerical methods to be considered, we will use finite differences to approximate the time derivative and use the finite element method to discretize the spatial variables. The finite elemfent method is widely used for solving boundary value problems of partial differential equations arising in physics and engineering, especially solid mechanics. The method is derived from discretizing the weak formulation of a boundary value problem. The analysis of the finite element method is closely related to that of the weak formulation of the boundary value problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Han, W., Reddy, B.D. (2013). Introduction to Finite Element Analysis. In: Plasticity. Interdisciplinary Applied Mathematics, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5940-8_9

Download citation

Publish with us

Policies and ethics