Skip to main content

Transgenics : Alternative Gene Transfer Methods

  • Reference work entry
Sustainable Food Production
  • 3455 Accesses

Definition of the Subject

Various techniques and mainly gene cloning , genome sequencing as well as transcriptomics provide researchers with an increasing number of genes. In order to know the role of the genes and the mechanisms of their regulation, it is mandatory to reintroduce them into their natural complex environment, cells, and animals. Transgenesis has thus become a major tool for biologists, and presently, at least 90% of GM animals are generated for basic studies. Transgenesis is not only a tool for research; it is also more and more extensively used for various biotechnological projects in the traditional fields of biology applications: medicine and agriculture.

The information provided by the understanding of the biological functions of humans and animals may give clue for the design of new treatments for patients and selection of farm animals, respectively. Transgenesis has thus become a key tool for the creation of animal models for the study of human diseases. These...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Animal cloning:

Non-sexual reproduction of an animal by transfer of a nucleus from a differentiated cell into the cytoplasm of an enucleated oocyte; SCNT (somatic cell nuclear transfer): cloning using a somatic cell as nuclear donor.

Chimeric animal:

Animal containing cells from two animals; chimeras are obtained by transferring embryonic cells from an animal into a recipient embryo; the chimera gametes contain the genome from one of the two embryos.

Hybrid:

Animal resulting from the sexual reproduction of parents from different breeds (intraspecies hybrid) or parents from different species (interspecies hybrid).

Knockdown:

Inhibition of the expression of a gene at the mRNA level by a siRNA.

Knockin:

Targeted integration of a gene by homologous recombination.

Knockout:

Inactivation of a gene by homologous recombination.

Lentiviral vector:

Gene construction able to integrate a foreign gene into a genome via an infection mechanism.

Meganuclease:

Endonuclease that is able to cut both strands of DNA and enhance the efficiency of homologous recombination.

Pluripotent cell:

Cell that is able to participate in the development of all the organs; lines of pluripotent cells can be established from early embryos (ES: embryonic stem cells) or from somatic cells (iPS: induced pluripotent cells) obtained by the transfer of genes responsible for the pluripotency of embryonic cells.

siRNA:

Small interfering RNA (also known as RNAi) that is able to inactivate specifically an mRNA by its degradation or by the reversible inhibition of its translation; siRNAs are generated by the degradation of long double-stranded RNAs, by the transcription of micro-RNA genes, by the transcription of gene constructions coding for shRNAs (small hairpin RNAs), or by chemical synthesis.

Transgenesis:

Experimental transfer of an isolated gene (or a DNA fragment of any origin) to animal cells making the transmission of the genetic modification to progeny by sexual reproduction possible. The animals harboring the foreign genes are known as transgenic animals, transgenics, GM animals (genetically modified animals), rDNA animals (recombinant DNA animals), or GE animals (genetically engineered animals).

Zinc finger nuclease (ZFN):

Engineered nucleases that are able to cleave both strands of genomic DNA in specific sites. ZFNs as meganucleases are able to induce a DNA repair and a local mutation equivalent to a knockout in the absence of foreign DNA or targeted gene integration at a high efficiency in the presence of a homologous recombination vector.

Bibliography

Primary Literature

  1. Baer A, Bode J (2001) Coping with kinetic and thermodynamic barriers: RMCE, an efficient strategy for the targeted integration of transgenes. Curr Opin Biotechnol 12:473–448

    PubMed  CAS  Google Scholar 

  2. Baker M (2009) Authentic rat embryonic stem cells. Nat Rep Stem Cells. doi:10.1038/stemcells 2009.11

    Google Scholar 

  3. Bishop JO (1997) Chromosomal insertion of foreign DNA. In: Houdebine LM (ed) Transgenic animal generation and use. Harwood Academic Publishers, Amsterdam, pp 219–224

    Google Scholar 

  4. Bosselman RA, Hsu RY, Boggs T, Hu S, Bruszewski J, Ou S, Kozar L, Martin F, Green C, Jacobsen F, Nicolson M, Schultz JA, Semon KM, Rishell W, Stewart RG (1989) Germline transmission of exogenous genes in the chicken. Science 243:533–535

    PubMed  CAS  Google Scholar 

  5. Bronson SK, Smithies O (1994) Altering mice by homologous recombination using embryonic stem cells. J Biol Chem 269:27155–27158

    PubMed  CAS  Google Scholar 

  6. Bronson SK, Plaehn EG, Kluckman KD, Hagaman JR, Maeda N, Smithies O (1996) Single-copy transgenic mice with chosen-site integration. Proc Natl Acad Sci USA 93:9067–9072

    PubMed  CAS  Google Scholar 

  7. Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, McLay R, Hall J, Ying QL, Smith A (2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135:1287–1298

    PubMed  CAS  Google Scholar 

  8. Capecchi MR (1989) Altering the genome by homologous recombination. Science 244:1288–1292

    PubMed  CAS  Google Scholar 

  9. Chang PY, Benecke H, Le Marchand-Brustel Y, Lawitts J, Moller DE (1994) Expression of a dominant-negative mutant human insulin receptor in the muscle of transgenic mice. J Biol Chem 269:16034–16040

    PubMed  CAS  Google Scholar 

  10. Chang YF, Imam JS, Wilkinson M (2007) The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem 76:51–74

    PubMed  CAS  Google Scholar 

  11. Chapman SC, Lawson A, Macarthur WC, Wiese RJ, Loechel RH, Burgos-Trinidad M, Wakefield JK, Ramabhadran R, Mauch TJ, Schoenwolf GC (2005) Ubiquitous GFP expression in transgenic chickens using a lentiviral vector. Development 132:935–940

    PubMed  CAS  Google Scholar 

  12. Chen YT, Levasseur R, Vaishnav S, Karsenty G, Bradley A (2004) Bigenic Cre/loxP, puDeltatk conditional genetic ablation. Nucleic Acids Res 32:e161

    PubMed  Google Scholar 

  13. Chkheidze AN, Lyakhov DL, Makeyev AV, Morales J, Kong J, Liebhaber SA (1999) Assembly of the α-globin mRNA stability complex reflects binary interaction between the pyrimidine-rich 3’ untranslated region determinant and poly(C) binding protein α CP. Mol Cell Biol 19:4572–4581

    PubMed  CAS  Google Scholar 

  14. Choulika A, Perrin A, Dujon B, Nicolas JF (1994) The yeast I-Sce I meganuclease induces site-directed chromosomal recombination in mammalian cells. C R Acad Sci 317:1013–1019

    CAS  Google Scholar 

  15. Choulika A, Perrin A, Dujon B, Nicolas JF (1995) Induction of homologous recombination in mammalian cells using the I-Sce I system of Saccharomyces cerevisiae. Mol Cell Biol 15:1968–1973

    PubMed  CAS  Google Scholar 

  16. Cohen-Tannoudji M, Robine S, Choulika A, Babinet C, Louvard D, Jaisser F (1998) I-Sce I-induced gene replacement at a natural locus in embryonic stem cells. Mol Cell Biol 18:1444–1448

    PubMed  CAS  Google Scholar 

  17. Cohen-Tannoudji M, Babinet C, Morello D (2000) Lac Z and ubiquitously expressed genes: should divorce be pronounced? Transgenic Res 9:233–235

    PubMed  CAS  Google Scholar 

  18. Couble P (1997) The biolistic. In: Houdebine LM (ed) Transgenic animal generation and use. Harwood Academic Publishers, Amsterdam, pp 209–213

    Google Scholar 

  19. Dann CT (2007) New technology for an old favorite: lentiviral transgenesis and RNAi in rats. Transgenic Res 16:571–580

    PubMed  CAS  Google Scholar 

  20. de Laat W, Grosveld F (2003) Spatial organization of gene expression: the active chromatin hub. Chromosome Res 11:447–459

    PubMed  CAS  Google Scholar 

  21. de Laat W, Klous P, Kooren J, Noordermeer D, Palstra RJ, Simonis M, Splinter E, Grosveld F (2008) Three-dimensional organization of gene expression in erythroid cells. Curr Top Dev Biol 82:117–139

    PubMed  CAS  Google Scholar 

  22. Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–483

    PubMed  CAS  Google Scholar 

  23. Dupuy AJ, Clark K, Carlson CM, Fritz S, Davidson AE, Markley KM, Finley K, Fletcher CF, Ekker SC, Hackett PB, Horn S, Largaespada DA (2002) Mammalian germ-line transgenesis by transposition. Proc Natl Acad Sci USA 99:4495–4499

    PubMed  CAS  Google Scholar 

  24. Echelard Y (1997) Genetic mosaicism in the generation of transgenic mice. In: Houdebine LM (ed) Transgenic animal generation and use. Harwood Academic Publishers, Amsterdam, pp 233–225

    Google Scholar 

  25. Epinat JC, Arnould S, Chames P, Rochaix P, Desfontaines D, Puzin C, Patin A, Zanghellini A, Paques F, Lacroix E (2003) A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res 31:2952–2962

    PubMed  CAS  Google Scholar 

  26. Garrick D, Fiering S, Martin DI, Whitelaw E (1998) Repeat-induced gene silencing in mammals. Nat Genet 18:56–59

    PubMed  CAS  Google Scholar 

  27. Gaszner M, Felsenfeld G (2006) Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet 7:703–713

    PubMed  CAS  Google Scholar 

  28. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Ménoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433

    PubMed  CAS  Google Scholar 

  29. Giraldo P, Rival-Gervier S, Houdebine LM, Montoliu L (2003) The potential benefits of insulators on heterogonous constructs in transgenic. Transgenic Res 12:751–755

    PubMed  CAS  Google Scholar 

  30. Gitzinger M, Kemmer C, El-Baba MD, Weber W, Fussenegger M (2009) Controlling transgene expression in subcutaneous implants using a skin lotion containing the apple metabolite phloretin. Proc Natl Acad Sci USA 106:10638–10643

    PubMed  CAS  Google Scholar 

  31. Gordon JW, Scangos GA, Plotkin DJ et al (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 77:7380–7384

    PubMed  CAS  Google Scholar 

  32. Hammer RE, Pursel VG, Rexroad CE et al (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680–683

    PubMed  CAS  Google Scholar 

  33. Han JY (2009) Germ cells and transgenic chicken. Comp Immunol Microbiol Infect Dis 32:61–80

    PubMed  Google Scholar 

  34. Henry I, Forlani S, Vaillant S, Muschler J, Choulika A, Nicolas JF (1999) LagoZ and LagZ, 2 genes depleted of CpG dinucleotides, derived from the LacZ gene for the study of epigenetic control. C R Acad Sci III 322:1061–1070

    PubMed  CAS  Google Scholar 

  35. Herold MJ, van den Brandt J, Seibler J, Reichardt HM (2008) Inducible and reversible gene silencing by stable integration of an shRNA-encoding lentivirus in transgenic rats. Proc Natl Acad Sci USA 105:18507–18512

    PubMed  CAS  Google Scholar 

  36. Houdebine LM (2003) Animal transgenesis and cloning. Wiley, Chichester, 250 pp

    Google Scholar 

  37. Houdebine LM (2007) Transgenic animal models and target validation. Methods Mol Biol 360:163–202

    PubMed  CAS  Google Scholar 

  38. Houdebine LM (2009) Methods to generate transgenic animals in ethics of science and technology assessment. Springer-Verlag, Heildelberg/Berlin/New York, pp 31–48

    Google Scholar 

  39. Houdebine LM, Attal J (1999) Internal ribosome entry sites (IRESs): reality and use. Transgenic Res 8:157–177

    PubMed  CAS  Google Scholar 

  40. Jerchow B (2009) Transgenic technology meeting 2008 in Toronto, Canada: a meeting report. Transgenic Res. doi:10.1007/s11248-008-9238-8

    PubMed  Google Scholar 

  41. Kalina J, Senigl F, Micáková A, Mucksová J, Blazkova J, Yan H, Poplstein M, Hejnar J, Trefil P (2007) Retrovirus-mediated in vitro gene transfer into chicken male germ line cells. Reproduction 134:445–453

    PubMed  CAS  Google Scholar 

  42. Kapuscinski AR, Hayes KR, Li S, Dana G (2007) Environmental risk assessment of genetically modified organisms, vol. 3 Methodologies for transgenic fish. Series eds. Hallerman EM (Guest) and Schei PJ. CAB International, Oxford, pp 304

    Google Scholar 

  43. Kayser K (1997) Gene transfer in Drosophila melanogaster. In: Houdebine LM (ed) Transgenic animal generation and use. Harwood Academic Publishers, Amsterdam, pp 133–137

    Google Scholar 

  44. Kuroiwa Y, Kasinathan P, Choi YJ, Naeem R, Tomizuka K, Sullivan EJ, Knott JG, Duteau A, Goldsby RA, Osborne BA, Ishida I, Robl JM (2002) Cloned transchromosomic calves producing human immunoglobulin. Nat Biotechnol 20:889–894

    PubMed  CAS  Google Scholar 

  45. Lavitrano M, Bacci ML, Forni M, Lazzereschi D, Di Stefano C, Fioretti D, Giancotti P, Marfe G, Pucci L, Renzi L, Wang H, Stoppacciaro A, Stassi G, Sargiacomo M, Sinibaldi P, Turchi V, Giovannoni R, Della Casa G, Seren E, Rossi G (2002) Efficient production by sperm-mediated gene transfer of human decay accelerating factor (hDAF) transgenic pigs for xenotransplantation. Proc Natl Acad Sci USA 99:14230–14235

    PubMed  CAS  Google Scholar 

  46. Lee YM, Jung JG, Kim JN, Park TS, Kim TM, Shin SS, Kang DK, Lim JM, Han JY (2006) A testis-mediated germline chimera production based on transfer of chicken testicular cells directly into heterologous testes. Biol Reprod 75:380–386

    PubMed  CAS  Google Scholar 

  47. Lewin HA (2009) It’s a Bull’s Market. Research on domesticated livestock heralds new advances in evolutionary biology, animal breeding, and animal models for human diseases. Science 324:478–479

    PubMed  CAS  Google Scholar 

  48. Li BC, Sun GB, Sun HC, Xu Q, Gao B, Zhou GY, Zhao WM, Wu XS, Bao WB, Yu F, Wang KH, Chen GH (2007) Efficient generation of transgenic chickens using the spermatogonial stem cells in vivo and ex vivo transfection. Reproduction 134:445–453

    Google Scholar 

  49. Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, Maxson RE, Schulze EN, Song H, Hsieh CL, Pera MF, Ying QL (2008) Germline competent embryonic stem cells derived from rat blastocysts. Cell 135:1299–1310

    PubMed  CAS  Google Scholar 

  50. Li W, Wei W, Zhu S, Zhu J, Shi Y, Lin T, Hao E, Hayek A, Deng H, Ding S (2009) Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4:16–19

    PubMed  Google Scholar 

  51. Liao J, Cui C, Chen S, Ren J, Chen J, Gao Y, Li H, Jia N, Cheng L, Xiao H, Xiao L (2008) Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell 4:11–15

    PubMed  Google Scholar 

  52. Lillico SG, Sherman A, McGrew MJ, Robertson CD, Smith J, Haslam C, Barnard P, Radcliffe PA, Mitrophanous A, Elliot EA, Sang HM (2007) Oviduct-specific expression of two therapeutic proteins in transgenic hens. Proc Natl Acad Sci USA 104:1771–1776

    PubMed  CAS  Google Scholar 

  53. Long X, Miano JM (2007) Remote control of gene expression. J Biol Chem 282:15941–15945

    PubMed  CAS  Google Scholar 

  54. Lunyak VV, Prefontaine GG, Núñez E, Cramer T, Ju BG, Ohgi KA, Hutt K, Roy R, García-Díaz A, Zhu X, Yung Y, Montoliu L, Glass CK, Rosenfeld MG (2007) Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis. Science 317:248–251

    PubMed  CAS  Google Scholar 

  55. Lyssiotis CA, Foreman RK, Staerk J, Garcia M, Mathur D, Markoulaki S, Hanna J, Lairson LL, Charette BD, Bouchez LC, Bollong M, Kunick C, Brinker A, Cho CY, Schultz PG, Jaenisch R (2009) Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc Natl Acad Sci USA 106:8912–8917

    PubMed  Google Scholar 

  56. Maclean N (2003) Genetically modified fish and their effects on food quality and human health and nutrition. Trends Food Sci Technol 14:242–252

    CAS  Google Scholar 

  57. Malphettes L, Fussenegger M (2006) Improved transgene expression fine-tuning in mammalian cells using a novel transcription-translation network. J Biotechnol 124:732–746

    PubMed  CAS  Google Scholar 

  58. Manzini S, Vargiolu A, Stehle IM, Bacci ML, Cerrito MG, Giovannoni R, Zannoni A, Bianco MR, Forni M, Donini P, Papa M, Lipps HJ, Lavitrano M (2006) Genetically modified pigs produced with a nonviral episomal vector. Proc Natl Acad Sci USA 103:17672–17677

    PubMed  CAS  Google Scholar 

  59. Marsh-Armstrong N, Huang H, Berry DL, Brown DD (1999) Germ-line transmission of transgenes in Xenopus laevis. Proc Natl Acad Sci USA 96:14389–14393

    PubMed  CAS  Google Scholar 

  60. McGrew MJ, Sherman A, Ellard FM, Lillico SG, Gilhooley HJ, Kingsman AJ, Mitrophanous KA, Sang H (2004) Efficient production of transgenic chickens using lentiviral vectors. EMBO Rep 5:728–733

    PubMed  CAS  Google Scholar 

  61. Mersch B, Gepperth A, Suhai Sand Hotz-Wagenblatt A (2008) Automatic detection of exonic splicing enhancers (ESEs) using SVMs. BMC Bioinform 9:369. doi:10.1186/1471-2105-9-369

    Google Scholar 

  62. Metzger D, Chambon P (2001) Site- and time-specific gene targeting in the mouse. Methods 24:71–80

    PubMed  CAS  Google Scholar 

  63. Mialhe E, Boulo V, Cadoret JP, Cedeno V, Rousseau C, Motte E, Gendreau S, Bachère E (1997) Gene transfer technology in marine invertebrates. In: Houdebine LM (ed) Transgenic animal generation and use. Harwood Academic Publishers, Amsterdam, pp 151–155

    Google Scholar 

  64. Moisyadi S, Kaminski JM, Yanagimachi R (2009) Use of intracytoplasmic sperm injection (ICSI) to generate transgenic animals. Comp Immunol Microbiol Infect Dis 32:47–60

    PubMed  Google Scholar 

  65. Moreira PN, Pozueta J, Pérez-Crespo M, Valdivieso F, Gutiérrez-Adán A, Montoliu L (2007) Improving the generation of genomic-type transgenic mice by ICSI. Transgenic Res 16:163–168

    PubMed  CAS  Google Scholar 

  66. Müller M (2000) Increasing disease resistance in transgenic domestic. In: Toutant JP, Balazs E (eds) Molecular farming. Institute National de la Recherche Agronomique, Paris, pp 87–98

    Google Scholar 

  67. Murphey P, Yamazaki Y, McMahan CA, Walter CA, Yanagimachi R, McCarrey JR (2009) Epigenetic regulation of genetic integrity is reprogrammed during cloning. Proc Natl Acad Sci USA 106:4731–4735

    PubMed  CAS  Google Scholar 

  68. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–110

    PubMed  CAS  Google Scholar 

  69. Notini AJ, Li R, Western PS, Sinclair AH, White SJ (2009) Rapid and reliable determination of transgene zygosity in mice by multiplex ligation-dependent probe amplification. Transgenic Res. 18:987–991

    PubMed  CAS  Google Scholar 

  70. Ono E, Amagai K, Taharaguchi S, Tomioka Y, Yoshino S, Watanabe Y, Cherel P, Houdebine LM, Adam M, Eloit M, Inobe M, Uede T (2004) Transgenic mice expressing a soluble form of porcine nectin-1/herpesvirus entry mediator C as a model for pseudorabies-resistant livestock. Proc Natl Acad Sci USA 101:16150–16155

    PubMed  CAS  Google Scholar 

  71. Palmiter RD, Brinster RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM (1982) Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300:611–615

    PubMed  CAS  Google Scholar 

  72. Pera MF, Hasegawa K (2008) Simpler and safer cell reprogramming. Nat Biotechnol 26:59–60

    PubMed  CAS  Google Scholar 

  73. Petersen B, Carnwath W, Niemann H (2009) The perspectives for porcine-to-human xenografts. Comp Immunol Microbiol Infect Dis 32:61–80

    Google Scholar 

  74. Pfeifer A (2006) Lentiviral transgenesis – a versatile tool for basic research and gene therapy. Curr Gene Ther 6:535–542

    PubMed  CAS  Google Scholar 

  75. Porteus MF, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973

    PubMed  CAS  Google Scholar 

  76. Rao M (2007) Scalable human ES culture for therapeutic use: propagation, differentiation, genetic modification and regulatory issues. Gene Ther 15:82–88

    PubMed  Google Scholar 

  77. Rehbinder E, Engelhard M, Hagen K, Jorgensen RB, Pardo-Avellaneda R, Schnieke A, Thiele F (2009) Pharming. Promises and risks of biopharmaceuticals derived from genetically modified plants and animals. Ethics of Science and Technology Assessment Vol 35. Springer-Verlag, Berlin/Heidelberg

    Google Scholar 

  78. Ritchie WA, Neil C, King T, Whitelaw CB (2007) Transgenic embryos and mice produced from low titre lentiviral vectors. Transgenic Res 16:661–664

    PubMed  CAS  Google Scholar 

  79. RNAi: Multi-author review (2009) Nature 457:7228

    Google Scholar 

  80. Roberts RM, Smith GW, Bazer FW, Cibelli J, Seidel GE Jr, Bauman DE, Reynolds LP, Ireland JJ (2009) Farm animal research in crisis. Science 324:468–469

    PubMed  CAS  Google Scholar 

  81. Robl JM, Wang Z, Kasinathan P, Kuroiwa Y (2007) Transgenic animal production and animal biotechnology. Theriogenology 67:127–133

    PubMed  CAS  Google Scholar 

  82. Saito M, Iwawaki T, Taya C, Yonekawa H, Noda M, Inui Y, Mekada E, Kimata Y, Tsuru A, Kohno K (2001) Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat Biotechnol 19:746–750

    PubMed  CAS  Google Scholar 

  83. Salter DW, Smith EJ, Hughes SH, Wright SE, Crittenden LB (1987) Transgenic chickens: insertion of retroviral genes into the chicken germ line. Virology 157:236–240

    PubMed  CAS  Google Scholar 

  84. Santiago Y, Chan E, Liu PQ et al (2008) Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci USA 105:5809–5814

    PubMed  CAS  Google Scholar 

  85. Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, Wilmut I, Colman A, Campbell KH (1997) Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278:2130–2133

    PubMed  CAS  Google Scholar 

  86. Scott BB, Lois C (2005) Generation of tissue-specific transgenic birds with lentiviral vectors. Proc Natl Acad Sci USA 102:16443–16447

    PubMed  CAS  Google Scholar 

  87. Shen W, Li L, Pan Q, Min L, Dong H, Deng J (2006) Efficient and simple production of transgenic mice and rabbits using the new DMSO-sperm mediated exogenous DNA transfer method. Mol Reprod Dev 73:589–594

    PubMed  CAS  Google Scholar 

  88. Shinohara ET, Kaminski JM, Segal DJ, Pelczar P, Kolhe R, Ryan T, Coates CJ, Fraser MJ, Handler AM, Yanagimachi R, Moisyadi S (2007) Active integration: new strategies for transgenesis. Transgenic Res 16:333–339

    PubMed  CAS  Google Scholar 

  89. Sioud M (2006) Innate sensing of self and non-self RNAs by toll-like receptors. Trends Mol Med 12:167–176

    PubMed  CAS  Google Scholar 

  90. Sippel AE, Saueressig H, Hubler MC, Faust N, Bonifer C (1997) Insulation of transgenes from chromosomal position effects. In: Houdebine LM (ed) Transgenic animal generation and use. Harwood Academic Publishers, Amsterdam, pp 257–266

    Google Scholar 

  91. Smith K, Spadafora C (2005) Sperm mediated gene transfer: applications and implications. BioEssays 27:551–562

    PubMed  CAS  Google Scholar 

  92. Taboit-Dameron F, Malassagne B, Viglietta C, Puissant C, Leroux-Coyau M, Chéreau C, Attal J, Weill B, Houdebine LM (1999) Association of the 5’HS4 sequence of the chicken beta-globin locus control region with human EF1-alpha gene promoter induces ubiquitous and high expression of human CD55 and CD59 cDNAs in transgenic rabbits. Transgenic Res 8:223–235

    PubMed  CAS  Google Scholar 

  93. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    PubMed  CAS  Google Scholar 

  94. Takehashi M, Kanatsu-Shinohara M, Inoue K, Ogonuki N, Miki H, Toyokuni S, Ogura A, Shinohara T (2007) Adenovirus-mediated gene delivery into mouse spermatogonial stem cells. Proc Natl Acad Sci USA 104:2596–2601

    PubMed  CAS  Google Scholar 

  95. Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 1:81–84

    Google Scholar 

  96. The Bovine Genome Sequencing and Analysis Consortium, Elsik CG, Tellam RL, Worley KC (2009) The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324:522–528

    PubMed  Google Scholar 

  97. Thermes V, Grabher C, Ristoratore F, Bourrat F, Choulika A, Wittbrodt J, Joly JS (2002) I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech Dev 118:91–98

    PubMed  CAS  Google Scholar 

  98. Thierry-Mieg D, Naert K, Bonnerot C (1997) Genetic transformation of Caenorhabditis elegans. In: Houdebine LM (ed) Transgenic animal generation and use. Harwood Academic Publishers, Amsterdam, pp 137–151

    Google Scholar 

  99. Tiscornia G, Singer O, Ikawa M, Verma IM (2003) A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci USA 100:1844–1848

    PubMed  CAS  Google Scholar 

  100. Umland T, Montoliu L, Schütz G (1997) The use of yeast artificial chromosomes for transgenesis. In: Houdebine LM (ed) Transgenic animal generation and use. Harwood Academic Publishers, Amsterdam, pp 289–298

    Google Scholar 

  101. Van de Lavoir MC, Diamond JH, Leighton PA, Mather-Love C, Heyer BS, Bradshaw R, Kerchner A, Hooi LT, Gessara TM, Swanberg SE, Delany ME, Etches RJ (2006) Germline transmission of genetically modified primordial germ cells. Nature 441:766–769

    PubMed  CAS  Google Scholar 

  102. Van Keuren ML, Gavrilina GB, Filipiak WE, Zeidler MG, Saunders TL (2009) Generating transgenic mice from bacterial artificial chromosomes: transgenesis efficiency, integration and expression outcomes. Transgenic Res. doi 10.1007/s11248-009-9271-2

    Google Scholar 

  103. Van Reenen CG (2009) Assessing the welfare of transgenic farm animals. In Ethics of science and technology assessment. Springer-Verlag, Heildelberg/Berlin/New York, pp 119–143

    Google Scholar 

  104. Van Reenen CG, Meuwissen THE, Hopster H, Oldenbroek K, Kruip TH, Blokhuis HJ (2001) Transgenesis may affect farm animal welfare: a case for systemic risk assessment. J Anim Sci 79:1763–1769

    PubMed  CAS  Google Scholar 

  105. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324

    PubMed  CAS  Google Scholar 

  106. Wilson JH (2008) Knockout punches with a fistful of zinc fingers. Proc Natl Acad Sci USA 105:5653–5654

    PubMed  CAS  Google Scholar 

  107. Woods IG, Schier AF (2008) Targeted mutagenesis in zebrafish. Nat Biotechnol 26:650–651

    PubMed  CAS  Google Scholar 

  108. Yang SH, Agca Y, Cheng PH, Yang JJ, Agca C, Wing Sang Chan A (2007) Enhanced transgenesis by intracytoplasmic injection of envelope-free lentivirus. Genesis 45:177–183

    PubMed  CAS  Google Scholar 

  109. Yong HY, Hao Y, Lai L, Li R, Murphy CN, Rieke A, Wax D, Samuel M, Prather RS (2006) Production of a transgenic piglet by a sperm injection technique in which no chemical or physical treatments were used for oocytes or sperm. Mol Reprod Dev 73:595–599

    PubMed  CAS  Google Scholar 

  110. Zambrowicz BP, Imamoto A, Fiering S, Herzenberg LA, Kerr WG, Soriano P (1997) Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc Natl Acad Sci USA 94:3789–3794

    PubMed  CAS  Google Scholar 

Books and Reviews

  • Honaramooz A, Megee S, Zeng W, Destrempes MM, Overton SA, Luo J, Galantino-Homer H, Modelski M, Chen F, Blash S, Melican DT, Gavin WG, Ayres S, Yang F, Wang PJ, Echelard Y, Dobrinski I (2008) Adeno-associated virus (AAV)–mediated transduction of male germ line stem cells results in transgene transmission after germ cell transplantation. FASEB J 22:374–382

    PubMed  CAS  Google Scholar 

  • Niemann H, Kues W, Carnwath JW (2009) Methods to generate transgenic animals in ethics of science and technology assessment, vol. 34. Springer-Verlag, Heildelberg/Berlin/New York, pp 1–30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis-Marie Houdebine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Houdebine, LM. (2013). Transgenics : Alternative Gene Transfer Methods . In: Christou, P., Savin, R., Costa-Pierce, B.A., Misztal, I., Whitelaw, C.B.A. (eds) Sustainable Food Production. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5797-8_4

Download citation

Publish with us

Policies and ethics