Skip to main content

Livestock Somatic Cell Nuclear Transfer

  • Reference work entry
Sustainable Food Production

Definition of Cloning and SCNT

Cloning is the production of genetically identical individuals by the process of asexual reproduction . In animals, the term has been applied to offspring that are produced by the technique of nuclear transfer (NT) . The process of nuclear transfer involves the production of an embryo by transferring nuclear genetic material from a donor cell (karyoplast ) into a recipient cell from which the genetic material has been removed (cytoplast ). Two factors determine the clonality of the resultant offspring. One is the recipient cell, generally an oocyte or unfertilized egg obtained from an unrelated animal. The second is the donor cell, which can be obtained from a variety of sources including embryos, germ line, and somatic tissues of fetuses and adult organisms. When cells from somatic tissues are used,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aneuploid:

An unbalanced number of chromosomes.

Blastocyst:

A stage of early development where the embryo contains a fluid-filled cavity and two cell populations: an inner cell mass and an outer layer of trophectoderm cells.

Cell cycle:

The period between the birth of a cell and its division. During a single cell cycle, the cell must duplicate all of its components, including DNA, to form two equal daughter cells.

Chromatin:

The combination of DNA and proteins, mostly histones.

Cytoplast:

An enucleated cell used as a recipient for a donor nucleus. Generally in SCNT, the recipient cytoplast is an enucleated oocyte.

Diploid:

The cell or nucleus contains two complete copies of the genome or a complete complement of chromosomes (2n), in general, a single maternal and a single paternal.

Donor cell:

The cell that provides the genetic material (nucleus) for SCNT. The resulting animal will be a genomic copy of the animal from which this cell was collected.

Haploid:

The cell or nucleus contains only a single copy of the genome or half of the chromosome complement (n). Pronuclei are, in general, haploid, containing either a single maternal genome or a single paternal genome.

Karyoplast:

A cell or a membrane-bound portion of a cell containing the donor nucleus enclosed. In livestock SCNT, the karyoplast is generally an intact cell.

Meiosis:

The process of reduction in the number of chromosomes that occurs during germ cell formation. Following a round of DNA synthesis, a single cell undergoes two rounds of division resulting in four cells, each containing a haploid genome. During division, independent assortment of parental chromosomes and homologous recombination generate a unique haploid genotype in each of the germ cells.

Metaphase II (MII):

Stage during the second meiotic division where the chromosomes are aligned at the metaphase plate prior to segregation of sister chromatids to opposite poles. In most mammalian species, mature oocytes arrest at MII and meiosis is reinitiated and completed upon fertilization.

Parthenote:

An unfertilized zygote produced by activation of an oocyte. A parthenote may be haploid or diploid for maternal DNA, a gynogenote, or following enucleation and replacement with paternal DNA, an androgenote.

Tetraploid:

The cell or nucleus contains four haploid copies of the genome (4n).

Zygote:

The 1-cell stage of development of a fertilized embryo. During most of the first cell cycle, the zygote will contain two pronuclei containing the maternal and paternal DNA.

Bibliography

  1. Baroux C et al (2008) The maternal to zygotic transition in animals and plants. Cold Spring Harb Symp Quant Biol 73:89–100

    Article  PubMed  CAS  Google Scholar 

  2. Newport J, Kirschner M (1982) A major developmental transition in early xenopus-embryos. 1. Characterization and timing of cellular-changes at the midblastula stage. Cell 30(3):675–686

    Article  PubMed  CAS  Google Scholar 

  3. Spemann H (1938) Embryonic development and induction, vol 7. Yale University Press, New Heaven, Mrs. Hepsa Ely Silliman Memorial Lectures. Yale University Press, New Haven, London; H. Milford, Oxford University Press, 401 p

    Google Scholar 

  4. Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated frogs eggs. Proc Natl Acad Sci USA 38(5):455–463

    Article  PubMed  CAS  Google Scholar 

  5. King TJ, Briggs R (1955) Changes in the nuclei of differentiating gastrula cells, as demonstrated by nuclear transplantation. Proc Natl Acad Sci USA 41(5):321–325

    Article  PubMed  CAS  Google Scholar 

  6. Gurdon JB (1962) Adult frogs derived from the nuclei of single somatic cells. Dev Biol 4:256–273

    Article  PubMed  CAS  Google Scholar 

  7. Gurdon JB, Elsdale TR, Fischberg M (1958) Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182(4627):64–65

    Article  PubMed  CAS  Google Scholar 

  8. Gurdon JB, Laskey RA, Reeves OR (1975) The developmental capacity of nuclei transplanted from keratinized skin cells of adult frogs. J Embryol Exp Morphol 34(1):93–112

    PubMed  CAS  Google Scholar 

  9. Bromhall JD (1975) Nuclear transplantation in the rabbit egg. Nature 258(5537):719–722

    Article  PubMed  CAS  Google Scholar 

  10. McGrath J, Solter D (1983) Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 220(4603):1300–1302

    Article  PubMed  CAS  Google Scholar 

  11. McGrath J, Solter D (1984) Inability of mouse blastomere nuclei transferred to enucleated zygotes to support development in vitro. Science 226(4680):1317–1319

    Article  PubMed  CAS  Google Scholar 

  12. Willadsen SM (1986) Nuclear transplantation in sheep embryos. Nature 320(6057):63–65

    Article  PubMed  CAS  Google Scholar 

  13. Prather RS et al (1987) Nuclear transplantation in the bovine embryo: assessment of donor nuclei and recipient oocyte. Biol Reprod 37(4):859–866

    Article  PubMed  CAS  Google Scholar 

  14. Prather RS, Sims MM, First NL (1989) Nuclear transplantation in early pig embryos. Biol Reprod 41(3):414–418

    Article  PubMed  CAS  Google Scholar 

  15. Campbell KH et al (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380(6569):64–66

    Article  PubMed  CAS  Google Scholar 

  16. Campbell KH, Ritchie WA, Wilmut I (1993) Nuclear-cytoplasmic interactions during the first cell cycle of nuclear transfer reconstructed bovine embryos: implications for deoxyribonucleic acid replication and development. Biol Reprod 49(5):933–942

    Article  PubMed  CAS  Google Scholar 

  17. Campbell KH et al (1994) Improved development to blastocyst of ovine nuclear transfer embryos reconstructed during the presumptive S-phase of enucleated activated oocytes. Biol Reprod 50(6):1385–1393

    Article  PubMed  CAS  Google Scholar 

  18. Wilmut I et al (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619):810–813

    Article  PubMed  CAS  Google Scholar 

  19. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  20. Lister R et al (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471(7336):68–73

    Article  PubMed  CAS  Google Scholar 

  21. Hussein SM et al (2011) Copy number variation and selection during reprogramming to pluripotency. Nature 471(7336):58–62

    Article  PubMed  CAS  Google Scholar 

  22. Gore A et al (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471(7336):63–67

    Article  PubMed  CAS  Google Scholar 

  23. Ding J et al (2009) Embryonic stem cells derived from somatic cloned and fertilized blastocysts are post-transcriptionally indistinguishable: a MicroRNA and protein profile comparison. Proteomics 9(10):2711–2721

    Article  PubMed  CAS  Google Scholar 

  24. Brambrink T et al (2006) ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc Natl Acad Sci USA 103(4):933–938

    Article  PubMed  CAS  Google Scholar 

  25. Loi P, Modlinski JA, Ptak G (2011) Interspecies somatic cell nuclear transfer: a salvage tool seeking first aid. Theriogenology 76(2):217–228

    Article  PubMed  CAS  Google Scholar 

  26. Vajta G (2007) Handmade cloning: the future way of nuclear transfer? Trends Biotechnol 25(6):250–253

    Article  PubMed  CAS  Google Scholar 

  27. Lee JH, Campbell KH (2006) Effects of enucleation and caffeine on maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK) activities in ovine oocytes used as recipient cytoplasts for nuclear transfer. Biol Reprod 74(4):691–698

    Article  PubMed  CAS  Google Scholar 

  28. Thornton M, Eward KL, Helmstetter CE (2002) Production of minimally disturbed synchronous cultures of hematopoietic cells. Biotechniques 32(5):1098–1100, 1102, 1105

    PubMed  CAS  Google Scholar 

  29. Lee JW et al (2003) Production of cloned pigs by whole-cell intracytoplasmic microinjection. Biol Reprod 69(3):995–1001

    Article  PubMed  CAS  Google Scholar 

  30. Song BS et al (2011) Inactivated Sendai-virus-mediated fusion improves early development of cloned bovine embryos by avoiding endoplasmic-reticulum-stress-associated apoptosis. Reprod Fertil Dev 23(6):826–836

    PubMed  Google Scholar 

  31. Heyman Y et al (2002) Frequency and occurrence of late-gestation losses from cattle cloned embryos. Biol Reprod 66(1):6–13

    Article  PubMed  CAS  Google Scholar 

  32. Li N et al (2005) Perturbations in the biochemical composition of fetal fluids are apparent in surviving bovine somatic cell nuclear transfer pregnancies in the first half of gestation. Biol Reprod 73(1):139–148

    Article  PubMed  CAS  Google Scholar 

  33. Palmieri C et al (2007) Placental abnormalities in ovine somatic cell clones at term: a light and electron microscopic investigation. Placenta 28(5–6):577–584

    Article  PubMed  CAS  Google Scholar 

  34. Loi P et al (2006) Placental abnormalities associated with post-natal mortality in sheep somatic cell clones. Theriogenology 65(6):1110–1121

    Article  PubMed  Google Scholar 

  35. Lin J et al (2011) Defects in trophoblast cell lineage account for the impaired in vivo development of cloned embryos generated by somatic nuclear transfer. Cell Stem Cell 8(4):371–375

    Article  PubMed  CAS  Google Scholar 

  36. Morgan HD et al (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14(1):R47–R58

    Article  PubMed  CAS  Google Scholar 

  37. Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69(6):915–926

    Article  PubMed  CAS  Google Scholar 

  38. Beaujean N et al (2004) Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer. Biol Reprod 71(1):185–193

    Article  PubMed  CAS  Google Scholar 

  39. Dean W et al (2001) Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci USA 98(24):13734–13738

    Article  PubMed  CAS  Google Scholar 

  40. Beaujean N et al (2004) Non-conservation of mammalian preimplantation methylation dynamics. Curr Biol 14(7):R266–R267

    Article  PubMed  CAS  Google Scholar 

  41. Shi W, Haaf T (2002) Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Mol Reprod Dev 63(3):329–334

    Article  PubMed  CAS  Google Scholar 

  42. Santos F et al (2003) Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr Biol 13(13):1116–1121

    Article  PubMed  CAS  Google Scholar 

  43. Wu X et al (2011) Multiple histone site epigenetic modifications in nuclear transfer and in vitro fertilized bovine embryos. Zygote 19(1):31–45

    Article  PubMed  CAS  Google Scholar 

  44. Maalouf WE, Alberio R, Campbell KH (2008) Differential acetylation of histone H4 lysine during development of in vitro fertilized, cloned and parthenogenetically activated bovine embryos. Epigenetics 3(4):199–209

    Article  PubMed  Google Scholar 

  45. Vassena R et al (2007) Tough beginnings: alterations in the transcriptome of cloned embryos during the first two cell cycles. Dev Biol 304(1):75–89

    Article  PubMed  CAS  Google Scholar 

  46. Oback B (2008) Climbing mount efficiency – small steps, not giant leaps towards higher cloning success in farm animals. Reprod Domest Anim 43:407–416

    Article  PubMed  Google Scholar 

  47. Latham KE, Solter D, Schultz RM (1992) Acquisition of a transcriptionally permissive state during the 1-cell stage of mouse embryogenesis. Dev Biol 149(2):457–462

    Article  PubMed  CAS  Google Scholar 

  48. Nichols J et al (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95(3):379–391

    Article  PubMed  CAS  Google Scholar 

  49. Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24(4):372–376

    Article  PubMed  CAS  Google Scholar 

  50. Mitsui K et al (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113(5):631–642

    Article  PubMed  CAS  Google Scholar 

  51. Rappolee DA et al (1994) Expression and function of FGF-4 in peri-implantation development in mouse embryos. Development 120(8):2259–2269

    PubMed  CAS  Google Scholar 

  52. Dailey L, Yuan HB, Basilico C (1994) Interaction between a Novel F9-specific factor and octamer-binding proteins is required for cell-type-restricted activity of the fibroblast growth-factor-4 enhancer. Mol Cell Biol 14(12):7758–7769

    PubMed  CAS  Google Scholar 

  53. Feldman B et al (1995) Requirement of Fgf-4 for postimplantation mouse development. Science 267(5195):246–249

    Article  PubMed  CAS  Google Scholar 

  54. Tanaka S et al (1998) Promotion of trophoblast stem cell proliferation by FGF4. Science 282(5396):2072–2075

    Article  PubMed  CAS  Google Scholar 

  55. Boiani M et al (2002) Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev 16(10):1209–1219

    Article  PubMed  CAS  Google Scholar 

  56. Bortvin A et al (2003) Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development 130(8):1673–1680

    Article  PubMed  CAS  Google Scholar 

  57. Fujii T et al (2010) Aberrant expression patterns of genes involved in segregation of inner cell mass and trophectoderm lineages in bovine embryos derived from somatic cell nuclear transfer. Cell Reprogram 12(5):617–625

    Article  PubMed  CAS  Google Scholar 

  58. Kirchhof N et al (2000) Expression pattern of Oct-4 in preimplantation embryos of different species. Biol Reprod 63(6):1698–1705

    Article  PubMed  CAS  Google Scholar 

  59. He S et al (2006) Developmental expression of pluripotency determining factors in caprine embryos: novel pattern of NANOG protein localization in the nucleolus. Mol Reprod Dev 73(12):1512–1522

    Article  PubMed  CAS  Google Scholar 

  60. Cauffman G et al (2005) Oct-4 mRNA and protein expression during human preimplantation development. Mol Hum Reprod 11(3):173–181

    Article  PubMed  CAS  Google Scholar 

  61. Kuijk EW et al (2008) Differences in early lineage segregation between mammals. Dev Dyn 237(4):918–927

    Article  PubMed  CAS  Google Scholar 

  62. Rodriguez-Alvarez L et al (2010) Changes in the expression of pluripotency-associated genes during preimplantation and peri-implantation stages in bovine cloned and in vitro produced embryos. Zygote 18(3):269–279

    Article  PubMed  CAS  Google Scholar 

  63. Long JE, Cai X, He LQ (2007) Gene profiling of cattle blastocysts derived from nuclear transfer, in vitro fertilization and in vivo development based on cDNA library. Anim Reprod Sci 100(3–4):243–256

    Article  PubMed  CAS  Google Scholar 

  64. Beyhan Z et al (2007) Gene expression in bovine nuclear transfer embryos in relation to donor cell efficiency in producing live offspring. Mol Reprod Dev 74(1):18–27

    Article  PubMed  CAS  Google Scholar 

  65. Niwa H et al (2005) Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123(5):917–929

    Article  PubMed  CAS  Google Scholar 

  66. Home P et al (2009) GATA3 Is selectively expressed in the trophectoderm of peri-implantation embryo and directly regulates Cdx2 gene expression. J Biol Chem 284(42):28729–28737

    Article  PubMed  CAS  Google Scholar 

  67. Nishioka N et al (2008) Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev 125(3–4):270–283

    Article  PubMed  CAS  Google Scholar 

  68. Ralston A et al (2010) Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development 137(3):395–403

    Article  PubMed  CAS  Google Scholar 

  69. Berg DK et al (2011) Trophectoderm lineage determination in cattle. Dev Cell 20(2):244–255

    Article  PubMed  CAS  Google Scholar 

  70. Degrelle SA et al (2005) Molecular evidence for a critical period in mural trophoblast development in bovine blastocysts. Dev Biol 288(2):448–460

    Article  PubMed  CAS  Google Scholar 

  71. Vejlsted M et al (2005) Ultrastructural and immunohistochemical characterization of the bovine epiblast. Biol Reprod 72(3):678–686

    Article  PubMed  CAS  Google Scholar 

  72. Kishigami S et al (2006) Normal specification of the extraembryonic lineage after somatic nuclear transfer. FEBS Lett 580(7):1801–1806

    Article  PubMed  CAS  Google Scholar 

  73. Mcgrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37(1):179–183

    Article  PubMed  CAS  Google Scholar 

  74. Inoue K et al (2002) Faithful expression of imprinted genes in cloned mice. Science 295(5553):297

    Article  PubMed  CAS  Google Scholar 

  75. Humpherys D et al (2002) Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc Natl Acad Sci USA 99(20):12889–12894

    Article  PubMed  CAS  Google Scholar 

  76. Rideout WM 3rd, Eggan K, Jaenisch R (2001) Nuclear cloning and epigenetic reprogramming of the genome. Science 293(5532):1093–1098

    Article  PubMed  CAS  Google Scholar 

  77. Gao SR et al (2003) Somatic cell-like features of cloned mouse embryos prepared with cultured myoblast nuclei. Biol Reprod 69(1):48–56

    Article  PubMed  CAS  Google Scholar 

  78. Ng RK, Gurdon JB (2005) Epigenetic memory of active gene transcription is inherited through somatic cell nuclear transfer. Proc Natl Acad Sci USA 102(6):1957–1962

    Article  PubMed  CAS  Google Scholar 

  79. Smith SL et al (2005) Global gene expression profiles reveal significant nuclear reprogramming by the blastocyst stage after cloning. Proc Natl Acad Sci USA 102(49):17582–17587

    Article  PubMed  CAS  Google Scholar 

  80. Krisher RL (2004) The effect of oocyte quality on development. J Anim Sci 82(E Suppl):E14–E23

    PubMed  Google Scholar 

  81. Li Y et al (2006) Confocal microscopic analysis of the spindle and chromosome configurations of human oocytes matured in vitro. Fertil Steril 85(4):827–832

    Article  PubMed  Google Scholar 

  82. Rizos D et al (2002) Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol Reprod Dev 61(2):234–248

    Article  PubMed  CAS  Google Scholar 

  83. Onishi A et al (2000) Pig cloning by microinjection of fetal fibroblast nuclei. Science 289(5482):1188–1190

    Article  PubMed  CAS  Google Scholar 

  84. Gao S et al (2002) Germinal vesicle material is essential for nucleus remodeling after nuclear transfer. Biol Reprod 67(3):928–934

    Article  PubMed  CAS  Google Scholar 

  85. Lee JH et al (2010) Generation of mtDNA homoplasmic cloned lambs. Cell Reprogram 12(3):347–355

    Article  PubMed  CAS  Google Scholar 

  86. Wakayama S, Cibelli JB, Wakayama T (2003) Effect of timing of the removal of oocyte chromosomes before or after injection of somatic nucleus on development of NT embryos. Cloning Stem Cells 5(3):181–189

    Article  PubMed  CAS  Google Scholar 

  87. Polejaeva IA et al (2000) Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407(6800):86–90

    Article  PubMed  CAS  Google Scholar 

  88. Wakayama T et al (2000) Nuclear transfer into mouse zygotes. Nat Genet 24(2):108–109

    Article  PubMed  CAS  Google Scholar 

  89. Baguisi A et al (1999) Production of goats by somatic cell nuclear transfer. Nat Biotechnol 17(5):456–461

    Article  PubMed  CAS  Google Scholar 

  90. Egli D et al (2007) Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature 447(7145):679–U8

    Article  PubMed  CAS  Google Scholar 

  91. Egli D et al (2009) Reprogramming after chromosome transfer into mouse blastomeres. Curr Biol 19(16):1403–1409

    Article  PubMed  CAS  Google Scholar 

  92. Mohammed AA et al (2010) Enucleated GV oocytes as recipients of embryonic nuclei in the G1, S, or G2 stages of the cell cycle. Cell Reprogram 12(4):427–435

    Article  PubMed  CAS  Google Scholar 

  93. Memili E, Dominko T, First NL (1998) Onset of transcription in bovine oocytes and preimplantation embryos. Mol Reprod Dev 51(1):36–41

    Article  PubMed  CAS  Google Scholar 

  94. Bordignon V, Smith LC (1998) Telophase enucleation: an improved method to prepare recipient cytoplasts for use in bovine nuclear transfer. Mol Reprod Dev 49(1):29–36

    Article  PubMed  CAS  Google Scholar 

  95. Wakayama T (2007) Production of cloned mice and ES cells from adult somatic cells by nuclear transfer: how to improve cloning efficiency? J Reprod Dev 53(1):13–26

    Article  PubMed  CAS  Google Scholar 

  96. Robl JM et al (1987) Nuclear transplantation in bovine embryos. J Anim Sci 64(2):642–647

    PubMed  CAS  Google Scholar 

  97. Tsunoda Y et al (1987) Full-term development of mouse blastomere nuclei transplanted into enucleated two-cell embryos. J Exp Zool 242(2):147–151

    Article  PubMed  CAS  Google Scholar 

  98. Egli D, Birkhoff G, Eggan K (2008) Mediators of reprogramming: transcription factors and transitions through mitosis. Nat Rev Mol Cell Biol 9(7):505–516

    Article  PubMed  CAS  Google Scholar 

  99. Egli D, Eggan K (2010) Recipient cell nuclear factors are required for reprogramming by nuclear transfer. Development 137(12):1953–1963

    Article  PubMed  CAS  Google Scholar 

  100. Noggle S et al (2011) Human oocytes reprogram somatic cells to a pluripotent state. Nature 478(7367):70–75

    Article  PubMed  CAS  Google Scholar 

  101. Alberts B, Wilson JH, Hunt T (2008) Molecular biology of the cell, 5th edn. Abingdon: Garland Science, New York, xxxiii, 1601, 90 p

    Google Scholar 

  102. Campbell KH et al (1996) Cell cycle co-ordination in embryo cloning by nuclear transfer. Rev Reprod 1(1):40–46

    Article  PubMed  CAS  Google Scholar 

  103. Leno GH, Downes CS, Laskey RA (1992) The nuclear membrane prevents replication of human G2 nuclei but not G1 nuclei in Xenopus egg extract. Cell 69(1):151–158

    Article  PubMed  CAS  Google Scholar 

  104. Tani T, Kato Y, Tsunoda Y (2001) Direct exposure of chromosomes to nonactivated ovum cytoplasm is effective for bovine somatic cell nucleus reprogramming. Biol Reprod 64(1):324–330

    Article  PubMed  CAS  Google Scholar 

  105. Wakayama T, Yanagimachi R (2001) Effect of cytokinesis inhibitors, DMSO and the timing of oocyte activation on mouse cloning using cumulus cell nuclei. Reproduction 122(1):49–60

    Article  PubMed  CAS  Google Scholar 

  106. Ono Y et al (2001) Production of cloned mice from embryonic stem cells arrested at metaphase. Reproduction 122(5):731–736

    Article  PubMed  CAS  Google Scholar 

  107. Wells DN et al (2003) Coordination between donor cell type and cell cycle stage improves nuclear cloning efficiency in cattle. Theriogenology 59(1):45–59

    Article  PubMed  CAS  Google Scholar 

  108. Eggan K et al (2001) Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci USA 98(11):6209–6214

    Article  PubMed  CAS  Google Scholar 

  109. Rideout WM 3rd et al (2000) Generation of mice from wild-type and targeted ES cells by nuclear cloning. Nat Genet 24(2):109–110

    Article  PubMed  CAS  Google Scholar 

  110. Gao S et al (2003) Effect of cell confluence on production of cloned mice using an inbred embryonic stem cell line. Biol Reprod 68(2):595–603

    Article  PubMed  CAS  Google Scholar 

  111. Humpherys D et al (2001) Epigenetic instability in ES cells and cloned mice. Science 293(5527):95–97

    Article  PubMed  CAS  Google Scholar 

  112. Wakayama T et al (1999) Mice cloned from embryonic stem cells. Proc Natl Acad Sci USA 96(26):14984–14989

    Article  PubMed  CAS  Google Scholar 

  113. Yabuuchi A et al (2004) Effects of nuclear transfer procedures on ES cell cloning efficiency in the mouse. J Reprod Dev 50(2):263–268

    Article  PubMed  Google Scholar 

  114. Ono Y, Kono T (2006) Irreversible barrier to the reprogramming of donor cells in cloning with mouse embryos and embryonic stem cells. Biol Reprod 75(2):210–216

    Article  PubMed  CAS  Google Scholar 

  115. Zhou Q et al (2001) Developmental potential of mouse embryos reconstructed from metaphase embryonic stem cell nuclei (vol 65, pg 412, 2001). Biol Reprod 65(5):1622

    Article  CAS  Google Scholar 

  116. Shiels PG et al (1999) Analysis of telomere lengths in cloned sheep. Nature 399(6734):316–317

    Article  PubMed  CAS  Google Scholar 

  117. Alexander B et al (2007) Telomere length status of somatic cell sheep clones and their offspring. Mol Reprod Dev 74(12):1525–1537

    Article  PubMed  CAS  Google Scholar 

  118. Hawkins RD et al (2010) Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6(5):479–491

    Article  PubMed  CAS  Google Scholar 

  119. Maherali N et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1(1):55–70

    Article  PubMed  CAS  Google Scholar 

  120. Meshorer E, Misteli T (2006) Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 7(7):540–546

    Article  PubMed  CAS  Google Scholar 

  121. Ahmed K et al (2010) Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo. PLoS One 5(5):e10531

    Article  PubMed  CAS  Google Scholar 

  122. Guenther MG et al (2010) Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell 7(2):249–257

    Article  PubMed  CAS  Google Scholar 

  123. Wakayama T, Yanagimachi R (2001) Mouse cloning with nucleus donor cells of different age and type. Mol Reprod Dev 58(4):376–383

    Article  PubMed  CAS  Google Scholar 

  124. Eggan K et al (2004) Mice cloned from olfactory sensory neurons. Nature 428(6978):44–49

    Article  PubMed  CAS  Google Scholar 

  125. Hochedlinger K, Jaenisch R (2002) Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415(6875):1035–1038

    Article  PubMed  CAS  Google Scholar 

  126. Inoue K et al (2005) Generation of cloned mice by direct nuclear transfer from natural killer T cells. Curr Biol 15(12):1114–1118

    Article  PubMed  CAS  Google Scholar 

  127. Oback B, Wells DN (2007) Donor cell differentiation, reprogramming, and cloning efficiency: elusive or illusive correlation? Mol Reprod Dev 74(5):646–654

    Article  PubMed  CAS  Google Scholar 

  128. Wakayama T et al (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394(6691):369–374

    Article  PubMed  CAS  Google Scholar 

  129. Wakayama T, Yanagimachi R (1999) Cloning of male mice from adult tail-tip cells. Nat Genet 22(2):127–128

    Article  PubMed  CAS  Google Scholar 

  130. Ogura A et al (2000) Birth of mice after nuclear transfer by electrofusion using tail tip cells. Mol Reprod Dev 57(1):55–59

    Article  PubMed  CAS  Google Scholar 

  131. Schatten H, Sun QY (2009) The functional significance of centrosomes in mammalian meiosis, fertilization, development, nuclear transfer, and stem cell differentiation. Environ Mol Mutagen 50(8):620–636

    Article  PubMed  CAS  Google Scholar 

  132. Wong C, Stearns T (2003) Centrosome number is controlled by a centrosome-intrinsic block to reduplication. Nat Cell Biol 5(6):539–544

    Article  PubMed  CAS  Google Scholar 

  133. Dai Y et al (2006) Fate of centrosomes following somatic cell nuclear transfer (SCNT) in bovine oocytes. Reproduction 131(6):1051–1061

    Article  PubMed  CAS  Google Scholar 

  134. Simerly C et al (2003) Molecular correlates of primate nuclear transfer failures. Science 300(5617):297

    Article  PubMed  Google Scholar 

  135. Zhou Q et al (2006) A comparative approach to somatic cell nuclear transfer in the rhesus monkey. Hum Reprod 21(10):2564–2571

    Article  PubMed  CAS  Google Scholar 

  136. Anderson S et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290(5806):457–465

    Article  PubMed  CAS  Google Scholar 

  137. St John JC, Bowles EJ, Amaral A (2007) Sperm mitochondria and fertilisation. Soc Reprod Fertil Suppl 65:399–416

    Google Scholar 

  138. St John JC et al (2004) The consequences of nuclear transfer for mammalian foetal development and offspring survival. A mitochondrial DNA perspective. Reproduction 127(6):631–641

    Article  PubMed  CAS  Google Scholar 

  139. Michaels GS, Hauswirth WW, Laipis PJ (1982) Mitochondrial DNA copy number in bovine oocytes and somatic cells. Dev Biol 94(1):246–251

    Article  PubMed  CAS  Google Scholar 

  140. Yang XY et al (2006) Improved efficiency of bovine cloning by autologous somatic cell nuclear transfer. Reproduction 132(5):733–739

    Article  PubMed  CAS  Google Scholar 

  141. Yan ZH et al (2010) Donor-host mitochondrial compatibility improves efficiency of bovine somatic cell nuclear transfer. BMC Dev Biol 10:31

    Article  PubMed  CAS  Google Scholar 

  142. Sansinena MJ et al (2011) Ooplasm transfer and interspecies somatic cell nuclear transfer: heteroplasmy, pattern of mitochondrial migration and effect on embryo development. Zygote 19(2):147–156

    Article  PubMed  CAS  Google Scholar 

  143. Kurome M et al (2003) Comparison of electro-fusion and intracytoplasmic nuclear injection methods in pig cloning. Cloning Stem Cells 5(4):367–378

    Article  PubMed  CAS  Google Scholar 

  144. Galli C et al (2002) Comparison of microinjection (piezo-electric) and cell fusion for nuclear transfer success with different cell types in cattle. Cloning Stem Cells 4(3):189–196

    Article  PubMed  CAS  Google Scholar 

  145. Jouneau A et al (2007) Piezo-assisted nuclear transfer affects cloning efficiency and may cause apoptosis. Reproduction 133(5):947–954

    Article  PubMed  CAS  Google Scholar 

  146. Kashir J et al (2010) Oocyte activation, phospholipase C zeta and human infertility. Hum Reprod Update 16(6):690–703

    Article  PubMed  CAS  Google Scholar 

  147. Ozil JP et al (2006) Ca2+ oscillatory pattern in fertilized mouse eggs affects gene expression and development to term. Dev Biol 300(2):534–544

    Article  PubMed  CAS  Google Scholar 

  148. Alberio R et al (2001) Mammalian oocyte activation: lessons from the sperm and implications for nuclear transfer. Int J Dev Biol 45(7):797–809

    PubMed  CAS  Google Scholar 

  149. Cervera R et al (2010) Effects of different oocyte activation procedures on development and gene expression of porcine pre-implantation embryos. Reprod Domest Anim 45(5):e12–e20

    PubMed  CAS  Google Scholar 

  150. Schurmann A, Wells DN, Oback B (2006) Early zygotes are suitable recipients for bovine somatic nuclear transfer and result in cloned offspring. Reproduction 132(6):839–848

    Article  PubMed  CAS  Google Scholar 

  151. Kishikawa H, Wakayama T, Yanagimachi R (1999) Comparison of oocyte-activating agents for mouse cloning. Cloning 1(3):153–159

    Article  PubMed  CAS  Google Scholar 

  152. Ross PJ et al (2008) Parthenogenetic activation of bovine oocytes using bovine and murine phospholipase C zeta. Bmc Develop Biol 8:16

    Article  CAS  Google Scholar 

  153. Ross PJ et al (2009) Activation of bovine somatic cell nuclear transfer embryos by PLCZ cRNA injection. Reproduction 137(3):427–437

    Article  PubMed  CAS  Google Scholar 

  154. Sparman ML, Tachibana M, Mitalipov SM (2010) Cloning of non-human primates: the road “less traveled by”. Int J Dev Biol 54(11–12):1671–1678

    Article  PubMed  CAS  Google Scholar 

  155. Vajta G et al (2010) Embryo culture: can we perform better than nature? Reprod Biomed Online 20(4):453–469

    Article  PubMed  Google Scholar 

  156. Zhou Q, Dai XP, Hao J (2009) A modified culture method significantly improves the development of mouse somatic cell nuclear transfer embryos. Reproduction 138(2):301–308

    Article  PubMed  CAS  Google Scholar 

  157. Hill JR, Chavatte-Palmer P (2002) Pregnancy and neonatal care of cloned animals. In: Cibelli J, Lanza R, Campbell K, West M (eds) Principles of cloning. Academic, New York, pp 247–266

    Chapter  Google Scholar 

  158. Meirelles FV et al (2010) Delivery of cloned offspring: experience in Zebu cattle (Bos indicus). Reprod Fertil Dev 22(1):88–97

    Article  PubMed  Google Scholar 

  159. Enright BP et al (2003) Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2′-deoxycytidine. Biol Reprod 69(3):896–901

    Article  PubMed  CAS  Google Scholar 

  160. Maalouf WE et al (2009) Trichostatin A treatment of cloned mouse embryos improves constitutive heterochromatin remodeling as well as developmental potential to term. BMC Dev Biol 9:11

    Article  PubMed  CAS  Google Scholar 

  161. Loi P et al (2008) Nuclear reprogramming: what has been done. Bioessays 30(1):66–74

    Article  PubMed  CAS  Google Scholar 

  162. Tsuji Y, Kato Y, Tsunoda Y (2009) The developmental potential of mouse somatic cell nuclear-transferred oocytes treated with trichostatin A and 5-aza-2′-deoxycytidine. Zygote 17(2):109–115

    Article  PubMed  CAS  Google Scholar 

  163. Kiziltepe T et al (2007) 5-Azacytidine, a DNA methyltransferase inhibitor, induces ATR-mediated DNA double-strand break responses, apoptosis, and synergistic cytotoxicity with doxorubicin and bortezomib against multiple myeloma cells. Mol Cancer Ther 6(6):1718–1727

    Article  PubMed  CAS  Google Scholar 

  164. Ding X et al (2008) Increased pre-implantation development of cloned bovine embryos treated with 5-aza-2′-deoxycytidine and trichostatin A. Theriogenology 70(4):622–630

    Article  PubMed  CAS  Google Scholar 

  165. Rathbone AJ et al (2010) Reprogramming of ovine somatic cells with Xenopus laevis oocyte extract prior to SCNT improves live birth rate. Cell Reprogram 12(5):609–616

    Article  PubMed  CAS  Google Scholar 

  166. Loi P et al (2002) Nuclei of nonviable ovine somatic cells develop into lambs after nuclear transplantation. Biol Reprod 67(1):126–132

    Article  PubMed  CAS  Google Scholar 

  167. Gurdon JB (1988) A community effect in animal development. Nature 336(6201):772–774

    Article  PubMed  CAS  Google Scholar 

  168. Boiani M et al (2003) Pluripotency deficit in clones overcome by clone-clone aggregation: epigenetic complementation? EMBO J 22(19):5304–5312

    Article  PubMed  CAS  Google Scholar 

  169. Balbach ST et al (2010) Governing cell lineage formation in cloned mouse embryos. Dev Biol 343(1–2):71–83

    Article  PubMed  CAS  Google Scholar 

  170. Zhou WL et al (2008) Aggregation of bovine cloned embryos at the four-cell stage stimulated gene expression and in vitro embryo development. Mol Reprod Dev 75(8):1281–1289

    Article  PubMed  CAS  Google Scholar 

  171. Matoba S et al (2011) RNAi-mediated knockdown of Xist can rescue the impaired postimplantation development of cloned mouse embryos. Proc Natl Acad Sci

    Google Scholar 

  172. Okamoto I et al (2011) Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 472(7343):370–U141

    Article  PubMed  CAS  Google Scholar 

  173. Inoue K et al (2010) Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science 330(6003):496–499

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio D. German .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

German, S.D., Campbell, K.H.S. (2013). Livestock Somatic Cell Nuclear Transfer . In: Christou, P., Savin, R., Costa-Pierce, B.A., Misztal, I., Whitelaw, C.B.A. (eds) Sustainable Food Production. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5797-8_2

Download citation

Publish with us

Policies and ethics