Skip to main content

Oxidative Stress and Hormetic Responses in the Early Life of Birds

  • Chapter
  • First Online:
Adaptive and Maladaptive Aspects of Developmental Stress

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 3))

Abstract

Understanding the physiological processes underlying the long-term effects of early life environmental conditions on Darwinian fitness is of central importance to evolutionary ecology, biomedical research, and conservation science. In particular, the extent to which early stress exposure is detrimental to fitness may depend on its severity, with mild stress exposure actually having a stimulatory and, possibly, beneficial effect through a hormetic response to the stressful stimulus. Oxidative stress is an aspect of stress physiology that has received comparatively less attention than hormones when considering the long-term effects of early life conditions. We therefore need to combine hormesis and oxidative stress in order to better understand how the early environment can help shape a phenotype adapted to the conditions it is most likely to experience in its adult environment. This chapter aims to discuss how hormones and nutrients can shape the redox machinery of the embryo and its future susceptibility to oxidative stress; how hormesis might provide a mechanistic framework for interpreting the long-term effects of early exposure to various stressor magnitudes; and how to reconcile discrepancies among studies. Examples from avian research are especially emphasised throughoutthechapter, notably because avian models may have many advantages over mammalian models when addressing the (mal)adaptive effects of early life experiences on adultphenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso-Alvarez C, Bertrand S, Devevey G, Prost J, Faivre B, Chastel O, Sorci G (2006) An experimental manipulation of life-history trajectories and resistance to oxidative stress. Evolution 60:1913–1924

    PubMed  Google Scholar 

  • Auld JR, Agrawal AA, Relyea RA (2010) Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc Biol Sci 277:503–511

    PubMed  Google Scholar 

  • Badyaev AV (2011) Origin of the fittest: link between emergent variation and evolutionary change as a critical question in evolutionary biology. Proc Biol Sci 278:1921–1929

    PubMed  Google Scholar 

  • Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS (1993) Fetal nutrition and cardiovascular disease in adult life. Lancet 341:938–941

    CAS  PubMed  Google Scholar 

  • Bartling B, Friedrich I, Silber RE, Simm A (2003) Ischemic preconditioning is not cardioprotective in senescent human myocardium. Ann Thorac Surg 76:105–111

    PubMed  Google Scholar 

  • Bateson P, Barker D, Clutton-Brock T, Deb D, D’Udine B, Foley RA, Gluckman P, Godfrey K, Kirkwood T, Lahr MM, McNamara J, Metcalfe NB, Monaghan P, Spencer HG, Sultan SE (2004) Developmental plasticity and human health. Nature 430:419–421

    CAS  PubMed  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    CAS  PubMed  Google Scholar 

  • Bize P, Devevey G, Monaghan P, Doligez B, Christe P (2008) Fecundity and survival in relation to resistance to oxidative stress in a free-living bird. Ecology 89:2584–2593

    PubMed  Google Scholar 

  • Brambilla G, Ballerini A, Civitareale C, Fiori M, Neri B, Cavallina R, Nardoni A, Giannetti L (2003) Oxidative stress as a bio-marker of estrogens exposure in healthy veal calves. Anal Chim Acta 483:281–288

    CAS  Google Scholar 

  • Burger JM, Hwangbo DS, Corby-Harris V, Promislow DE (2007) The functional costs and benefits of dietary restriction in Drosophila. Aging Cell 6:63–71

    CAS  PubMed  Google Scholar 

  • Calabrese EJ (2010) Hormesis is central to toxicology, pharmacology and risk assessment. Hum Exp Toxicol 29:249–261

    PubMed  Google Scholar 

  • Calabrese EJ, Blain R (2005) The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview. Toxicol Appl Pharmacol 202:289–301

    CAS  PubMed  Google Scholar 

  • Calabrese EJ, Bachmann KA, Bailer AJ, Bolger PM, Borak J, Cai L, Cedergreen N, Cherian MG, Chlueh CC, Clarkson TW, Cook RR, Diamond DM, Doolittle DJ, Dorato MA, Duke SO, Feinendegen L, Gardner DE, Hart RW, Hastings KL, Hayes AW, Hoffmann GR, Ives JA, Jaworowski Z, Johnson TE, Jonas WB, Kaminski NE, Keller JG, Klaunig JE, Knudsen TB, Kozumbo WJ, Lettleri T, Liu SZ, Maisseu A, Maynard KI, Masoro EJ, McClellan RO, Mehendale HM, Mothersill C, Newlin DB, Nigg HN, Oehme FW, Phalen RF, Philbert MA, Rattan SIS, Riviere JE, Rodricks J, Sapolsky RM, Scott BR, Seymour C, Sinclair DA, Smith-Sonneborn J, Snow ET, Spear L, Stevenson DE, Thomas Y, Tubiana M, Williams GM, Mattson MP (2007) Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose–response framework. Toxicol Appl Pharmacol 222:122–128

    CAS  PubMed  Google Scholar 

  • Carere C, Balthazart J (2007) Sexual versus individual differentiation: the controversial role of avian maternal hormones. Trends Endocrinol Metab 18:73–80

    CAS  PubMed  Google Scholar 

  • Casagrande S, Dell’Omo G, Costantini D, Tagliavini J, Groothuis T (2011) Variation of a carotenoid-based trait in relation to oxidative stress and endocrine status during the breeding season in the Eurasian kestrel: a multi-factorial study. Comp Biochem Physiol A Mol Integr Physiol 160:16–26

    CAS  PubMed  Google Scholar 

  • Casagrande S, Costantini D,Groothuis TGG (2012a) Interaction between sexual steroids and immune response in affecting oxidative status of birds. Comparative Biochemistry and Physiology Part A 163:296–301

    CAS  PubMed  Google Scholar 

  • Casagrande S, Costantini D, Dell’Omo G, Tagliavini J, Groothuis TGG (2012b)Differential effects of testosterone metabolites oestradiol and dihydrotestosterone on oxidative stress and carotenoid-dependent colour expression in a bird. Behav Ecol Sociobiol 66: 1319–1331

    CAS  PubMed  Google Scholar 

  • Chapman PM (1998) New and emerging issues in ecotoxicology—the shape of testing to come? Australas J Ecotoxicol 4:1–7

    Google Scholar 

  • Costantini D (2008) Oxidative stress in ecology and evolution: lessons from avian studies. Ecol Lett 11:1238–1251

    PubMed  Google Scholar 

  • Costantini D, Dell’omo G (2006) Effects of T-cell-mediated immune response on avian oxidative stress. Comp Biochem Physiol A Mol Integr Physiol 145:137–142

    PubMed  Google Scholar 

  • Costantini D, Verhulst S (2009) Does high antioxidant capacity indicate low oxidative stress? Funct Ecol 23:506–509

    Google Scholar 

  • Costantini D, Metcalfe NB, Monaghan P (2010) Ecological processes in a hormetic framework. Ecol Lett 13:1435–1447

    PubMed  Google Scholar 

  • Costantini D, Marasco V, Møller AP (2011) A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. J Comp Physiol B 181:447–456

    CAS  PubMed  Google Scholar 

  • Costantini D, Monaghan P, Metcalfe N (2012) Early life experience primes resistance to oxidative stress. J Exp Biol 215:2820–2826

    CAS  PubMed  Google Scholar 

  • Curley JP, Branchi I (2012) Ontogeny of stable individual differences: gene-environment and epigenetic mechanisms. In: Carere C, Maestripieri D (eds) Animal personalities. Behavior, physiology, and evolution. The University of Chicago Press, Chicago

    Google Scholar 

  • Dahlöf L-G, Hård E, Larsson K (1977) Influence of maternal stress on offspring sexual behaviour. Anim Behav 25:958–968

    PubMed  Google Scholar 

  • Downing JA, Bryden WL (2002) A non-invasive test of stress in laying hens. Rural Industries Research and Development Corporation (RIRDC), Barton

    Google Scholar 

  • Eriksen MS, Haug A, Torjesen PA, Bakken M (2003) Prenatal exposure to corticosterone impairs embryonic development and increases fluctuating asymmetry in chickens (Gallus gallus domesticus). Br Poult Sci 44:690–697

    CAS  PubMed  Google Scholar 

  • Forbes VE (2000) Is hormesis an evolutionary expectation? Funct Ecol 14:12–24

    Google Scholar 

  • Furness L, Speakman JR (2008) Energetics and longevity in birds. Age 30:75–87

    CAS  PubMed  Google Scholar 

  • Galvan I, Alonso-Alvarez C (2010) Yolk testosterone shapes the expression of a melanin-based signal in great tits: an antioxidant-mediated mechanism? J Exp Biol 213:3127–3130

    CAS  PubMed  Google Scholar 

  • Gerhart J, Kirschner M (2007) The theory of facilitated variation. Proc Natl Acad Sci USA 104:8582–8589

    CAS  PubMed  Google Scholar 

  • Gilbert SF (2001) Ecological developmental biology: developmental biology meets the real world. Dev Biol 233:1–12

    CAS  PubMed  Google Scholar 

  • Gluckman PD, Hanson MA (2004) The developmental origins of the metabolic syndrome. Trends Endocrinol Metab 15:183–187

    CAS  PubMed  Google Scholar 

  • Groothuis TGG, Schwabl H (2008) Hormone-mediated maternal effects in birds: mechanisms matter but what do we know of them? Philos Trans R Soc Lond B Biol Sci 363:1647–1661

    CAS  PubMed  Google Scholar 

  • Groothuis TGG, Müller W, von Engelhardt N, Carere C, Eising C (2005) Maternal hormones as a tool to adjust offspring phenotype in avian species. Neurosci Biobehav Rev 29:329–352

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Haussmann MF, Longenecker AS, Marchetto NM, Juliano SA, Bowden RM (2012) Embryonic exposure to corticosterone modifies the juvenile stress response, oxidative stress and telomere length. Proc Biol Sci 279(1732):1447–1456

    CAS  PubMed  Google Scholar 

  • Hayes DP (2007) Nutritional hormesis. Eur J Clin Nutr 61:147–159

    CAS  PubMed  Google Scholar 

  • Hayward LS, Wingfield JC (2004) Maternal corticosterone is transferred to avian yolk and may alter offspring growth and adult phenotype. Gen Comp Endocrinol 135:365–371

    CAS  PubMed  Google Scholar 

  • Henriksen R, Rettenbacher S, Groothuis TGG (2011) Prenatal stress in birds: pathways, effects, function and perspectives. Neurosci Biobehav Rev 35:1484–1501

    PubMed  Google Scholar 

  • Heydari AR, Wu B, Takahashi R, Strong R, Richardson A (1993) Expression of heat shock protein 70 is altered by age and diet at the level of transcription. Mol Cell Biol 13:2909–2918

    CAS  PubMed  Google Scholar 

  • Holmes RS, Moxon LN, Parsons PA (1980) Genetic variability of alcohol dehydrogenase among Australian Drosophila species: correlation of ADH biochemical phenotype with ethanol resource utilization. J Exp Zool 214:199–204

    CAS  PubMed  Google Scholar 

  • Honma Y, Tani M, Yamamura K, Takayama M, Hasegawa H (2003) Preconditioning with heat shock further improved functional recovery in young adult but not in middle-aged rat hearts. Exp Gerontol 38:299–306

    PubMed  Google Scholar 

  • Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213

    CAS  PubMed  Google Scholar 

  • Hyun DH, Emerson SS, Jo DG, Mattson MP, de Cabo R (2006) Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during aging. Proc Natl Acad Sci USA 103:19908–19912

    CAS  PubMed  Google Scholar 

  • Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8:1865–1879

    CAS  PubMed  Google Scholar 

  • Le Bourg E (2005) Hormetic protection of Drosophila melanogaster middle-aged male flies from heat stress by mildly stressing them at young age. Naturwissenschaften 92:293–296

    CAS  PubMed  Google Scholar 

  • Le Bourg E, Minois N (1997) Increased longevity and resistance to heat shock in Drosophila melanogaster flies exposed to hypergravity. C R Acad Sci III 320:215–221

    PubMed  Google Scholar 

  • Le Bourg E, Toffin E, Massé A (2004) Male Drosophila melanogaster flies exposed to hypergravity at young age are protected against a non-lethal heat shock at middle age but not against behavioral impairments due to this shock. Biogerontology 5:431–443

    PubMed  Google Scholar 

  • Levine S, Haltmeyer GC, Karas GG (1967) Physiological and behavioral effects of infantile stimulation. Physiol Behav 2:55–59

    CAS  Google Scholar 

  • Lipar JL, Ketterson ED, Nolan V Jr, Casto JM (1999) Egg yolk layers vary in the concentration of steroid hormones in two avian species. Gen Comp Endocrinol 115:220–227

    CAS  PubMed  Google Scholar 

  • Liu D, Diorio J, Tannenbaum B, Caldji C, Francis DD, Freedman A, Sharma S, Pearson D, Plotsky PM, Meaney MJ (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277:1659–1662

    CAS  PubMed  Google Scholar 

  • Liu D, Chan SL, de Souza-Pinto NC, Slevin JR, Wersto RP, Zhan M, Mustafa K, de Cabo R, Mattson MP (2006) Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress. Neuromolecular Med 8:389–414

    CAS  PubMed  Google Scholar 

  • Lloyd D, Aon MA, Cortassa S (2001) Why homeodynamics, not homeostasis? ScientificWorldJournal 1:133–145

    CAS  PubMed  Google Scholar 

  • Love OP, Williams TD (2008a) Plasticity in the adrenocortical response of a free-living vertebrate: the role of pre- and post-natal developmental stress. Horm Behav 54:496–505

    CAS  PubMed  Google Scholar 

  • Love OP, Williams TD (2008b) The adaptive value of stress-induced phenotypes: effects of maternally derived corticosterone on sex-biased investment, cost of reproduction, and maternal fitness. Am Nat 172:E135–E149

    PubMed  Google Scholar 

  • Love OP, Chin EH, Wynne-Edwards KE, Williams TD (2005) Stress hormones: a link between maternal condition and sex-biased reproductive investment. Am Nat 166:751–766

    PubMed  Google Scholar 

  • Mangel M (2008) Environment, damage and senescence: modelling the life-history consequences of variable stress and caloric intake. Funct Ecol 22:422–430

    Google Scholar 

  • Marasco V, Robinson J, Herzyk P, Spencer KA (2012) Pre- and post-natal stress in context: effects on the stress physiology in a precocial bird. J Exp Biol 215:3955–3964

    Google Scholar 

  • Mattson MP, Calabrese EJ (2010) Hormesis: a revolution in biology, toxicology and medicine. Springer, New York

    Google Scholar 

  • McGraw KJ, Cohen A, Costantini D, Horak P (2010) The ecological significance of antioxidants and oxidative stress: a marriage of functional and mechanistic approaches. Funct Ecol 24:947–949

    Google Scholar 

  • Metcalfe NB, Monaghan P (2001) Compensation for a bad start: grow now, pay later? Trends Ecol Evol 16(5):254–260

    PubMed  Google Scholar 

  • Monaghan P (2008) Early growth conditions, phenotypic development and environmental change. Philos Trans R Soc Lond B Biol Sci 363:1635–1645

    PubMed  Google Scholar 

  • Monaghan P, Metcalfe NB, Torres R (2009) Oxidative stress as a mediator of life history trade-offs: mechanisms, measurement and interpretation. Ecol Lett 12:75–92

    PubMed  Google Scholar 

  • Nelson RJ (2005) An introduction to behavioral endocrinology. Sinauer, Sunderland

    Google Scholar 

  • Noguera JC, Alonso-Alvarez C, Kim SY, Morales J, Velando A (2011) Yolk testosterone reduces levels of oxidative damages during postnatal development. Biol Lett 7:93–95

    CAS  PubMed  Google Scholar 

  • Oomen CA, Soeters H, Audureau N, Vermunt L, van Hasselt FN, Manders EMM, Joels M, Lucassen PJ, Krugers H (2010) Severe early life stress hampers spatial learning and neurogenesis, but improves hippocampal synaptic plasticity and emotional learning under high-stress conditions in adulthood. J Neurosci 30:6635–6645

    CAS  PubMed  Google Scholar 

  • Pamplona R, Barja G (2007) Highly resistant macromolecular components and low rate of generation of endogenous damage: two key traits of longevity. Ageing Res Rev 6:189–210

    CAS  PubMed  Google Scholar 

  • Pamplona R, Costantini D (2011) Molecular and structural antioxidant defences against oxidative stress in animals. Am J Physiol Regul Integr Comp Physiol 301:R843–R863

    CAS  PubMed  Google Scholar 

  • Parsons PA (2001) The hormetic zone: an ecological and evolutionary perspective based upon habitat characteristics and fitness selection. Q Rev Biol 76:459–467

    CAS  PubMed  Google Scholar 

  • Pigliucci M (2001) Phenotypic plasticity: beyond nature and nurture. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Pigliucci M, Murren CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209:2362–2367

    PubMed  Google Scholar 

  • Raubenheimer D, Simpson SJ (2009) Nutritional pharmecology: doses, nutrients, toxins, and medicines. Integr Comp Biol 49:329–337

    CAS  PubMed  Google Scholar 

  • Raubenheimer D, Lee K-P, Simpson SJ (2005) Does Bertrand’s rule apply to macronutrients? Proc Biol Sci 272:2429–2434

    CAS  PubMed  Google Scholar 

  • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118

    CAS  PubMed  Google Scholar 

  • Romero LM (2004) Physiological stress in ecology: lessons from biomedical research. Trends Ecol Evol 19:249–255

    PubMed  Google Scholar 

  • Royle NJ, Surai PF, McCartney RJ, Speake BK (1999) Parental investment and egg yolk lipid composition in gulls. Funct Ecol 13:298–306

    PubMed  Google Scholar 

  • Royle NJ, Surai PF, Hartley IR (2001) Maternally derived androgens and antioxidants in bird eggs: complementary but opposing effects? Behav Ecol 12:381–385

    Google Scholar 

  • Rubolini D, Romano M, Boncoraglio G, Ferrari RP, Martinelli R, Galeotti P, Fasola M, Saino N (2005) Effects of elevated egg corticosterone levels on behavior, growth, and immunity of yellow-legged gull Larus michahellis chicks. Horm Behav 47:592–605

    CAS  PubMed  Google Scholar 

  • Saino N, Romano M, Ferrari RP, Martinelli R, Møller AP (2005) Stressed mothers lay eggs with high corticosterone levels which produce low-quality offspring. J Exp Zool A Comp Exp Biol 303a:998–1006

    CAS  Google Scholar 

  • Saino N, Caprioli M, Romano M, Boncoraglio G, Rubolini D, Ambrosini R, Bonisoli-Alquati A, Romano A (2011) Antioxidant defenses predict long-term survival in a passerine bird. PLoS One 6:e19593

    CAS  PubMed  Google Scholar 

  • Sanz A, Pamplona R, Barja G (2006) Is the mitochondrial free radical theory of aging intact? Antioxid Redox Signal 8:582–599

    CAS  PubMed  Google Scholar 

  • Schoech SJ, Rensel MA, Heiss RS (2011) Short- and long-term effects of developmental corticosterone exposure on avian physiology, behavioral phenotype, cognition, and fitness: a review. Curr Zool 57:514–530

    CAS  Google Scholar 

  • Schwabl H (1993) Yolk is a source of maternal testosterone for developing birds. Proc Natl Acad Sci USA 90:11446–11450

    CAS  PubMed  Google Scholar 

  • Schwabl H (1996) Maternal testosterone in the avian egg enhances postnatal growth. Comp Biochem Physiol A Physiol 114:271–276

    CAS  PubMed  Google Scholar 

  • Schwabl H, Mock DW, Gieg JA (1997) A hormonal mechanism for parental favouritism. Nature 386:231

    CAS  Google Scholar 

  • Seckl JR (1998) Physiologic programming of the fetus. Clin Perinatol 25:939–964

    CAS  PubMed  Google Scholar 

  • Sies H (1991) Oxidative stress II. Oxidants and antioxidants. Academic, London

    Google Scholar 

  • Sockman KW, Schwabl H (2000) Yolk androgens reduce offspring survival. Proc Biol Sci 267:1451–1456

    CAS  PubMed  Google Scholar 

  • Sohal RS, Orr WC (2012) The redox stress hypothesis of aging. Free Radic Biol Med 52:539–555

    CAS  PubMed  Google Scholar 

  • Southam CM, Ehrlich J (1943) Effects of extracts of western red cedar heartwood on certain wood-decaying fungi in culture. Phytopathology 33:517–524

    Google Scholar 

  • Spencer KA, Evans NP, Monaghan P (2009) Postnatal stress in birds: a novel model of glucocorticoid programming of the hypothalamic-pituitary-adrenal axis. Endocrinology 150:1931–1934

    CAS  PubMed  Google Scholar 

  • Stebbing ARD (2009) Interpreting ‘dose-response’ curves using homeodynamic data: with an improved explanation for hormesis. Dose Response 7:221–233

    CAS  PubMed  Google Scholar 

  • Surai P (2002) Natural antioxidants in avian nutrition and reproduction. Nottingham University Press, Nottingham

    Google Scholar 

  • Surai PF, Noble RC, Speake BK (1996) Tissue-specific differences in antioxidant distribution and susceptibility to lipid peroxidation during development of the chick embryo. Biochim Biophys Acta 1304:1–10

    CAS  PubMed  Google Scholar 

  • Surai PF, Bortolotti GR, Fidgett AL, Blount JD, Speake BK (2001) Effects of piscivory on the fatty acid profiles and antioxidants of avian yolk: studies on eggs of the gannet, skua, pelican and cormorant. J Zool 255:305–312

    Google Scholar 

  • Szyf M, Weaver IC, Champagne FA, Diorio J, Meaney MJ (2005) Maternal programming of steroid receptor expression and phenotype through DNA methylation in the rat. Front Neuroendocrinol 26:139–162

    CAS  PubMed  Google Scholar 

  • Tapia PC (2006) Sublethal mitochondrial stress with an attendant stoichiometric augmentation of reactive oxygen species may precipitate many of the beneficial alterations in cellular physiology produced by caloric restriction, intermittent fasting, exercise and dietary phytonutrients: “mitohormesis” for health and vitality. Med Hypotheses 66:832–843

    CAS  PubMed  Google Scholar 

  • Tobler M, Sandell MI (2009) Sex-specific effects of prenatal testosterone on nestling plasma antioxidant capacity in the zebra finch. J Exp Biol 212:89–94

    PubMed  Google Scholar 

  • Ugochukwu NH, Figgers CL (2007) Dietary caloric restriction improves the redox status at the onset of diabetes in hepatocytes of streptozotocin induced diabetic rats. Chem Biol Interact 165:45–53

    CAS  PubMed  Google Scholar 

  • Vaiserman AM (2010) Hormesis, adaptive epigenetic reorganization, and implications for human health and longevity. Dose Response 8:16–21

    PubMed  Google Scholar 

  • Ward IL (1972) Prenatal stress feminizes and demasculinizes the behavior of males. Science 175:82–84

    CAS  PubMed  Google Scholar 

  • Webster Marketon JI, Glaser R (2008) Stress hormones and immune function. Cell Immunol 252:16–26

    CAS  PubMed  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Wingfield JC, Maney DL, Breuner CW, Jacobs JD, Lynn S, Ramenofsky M, Richardson RD (1998) Ecological bases of hormone–behavior interactions: the ‘‘emergency life history stage’’. Am Zool 38:191–206

    PubMed  Google Scholar 

  • Wingfield JC, Hunt KE (2002) Arctic spring: hormone-behavior interactions in a severe environment. Comp Biochem Physiol B 132:275–286

    PubMed  Google Scholar 

  • Yahav S, McMurtry JP (2001) Thermotolerance acquisition in broiler chickens by temperature conditioning early in life–the effect of timing and ambient temperature. Poult Sci 80:1662–1666

    CAS  PubMed  Google Scholar 

  • Yates FE (1994) Order and complexity in dynamical systems: homeodynamics as a generalized mechanics for biology. Math Comput Model 19:49–74

    Google Scholar 

Download references

Acknowledgements

I thank Shona Smith, Valeria Marasco, and two anonymous reviewers for valuable comments that helped me improve the presentation of the manuscript. During manuscript preparation, I was supported by a NERC postdoctoral fellowship (NE/G013888/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Costantini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Costantini, D. (2013). Oxidative Stress and Hormetic Responses in the Early Life of Birds. In: Laviola, G., Macrì, S. (eds) Adaptive and Maladaptive Aspects of Developmental Stress. Current Topics in Neurotoxicity, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5605-6_13

Download citation

Publish with us

Policies and ethics