Skip to main content

Integrating Systems and Synthetic Biology

  • Chapter
  • First Online:
Developing Biofuel Bioprocesses Using Systems and Synthetic Biology

Part of the book series: SpringerBriefs in Systems Biology ((BRIEFSBIOSYS))

Abstract

Research approaches to developing biofuel processes involve the integration of different aspects of biology, chemistry, and engineering. Recent developments in knowledge and technology have enabled a shift away from discovery-based, trial-and-error design to a more directed prospective design process. Systems biology and synthetic biology have contributed to this shift in methodologies in complementary ways. Systems biology provides much of the knowledge background and whole-cell modeling methods to enable cellular-level design. Synthetic biology provides DNA-level detail to design strategies and the experimental methods to directly implement proposed designs. Application of methodologies from these two fields provides a strong framework for cellular and molecular biological engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araujo GS, Matos LJ, Gonçalves LR, Fernandes FA, Farias WR (2011) Bioprospecting for oil producing microalgal strains: evaluation of oil and biomass production for ten microalgal strains. Bioresour Technol 102(8):5248–5250. doi:10.1016/j.biortech

    Article  PubMed  CAS  Google Scholar 

  • Bruant G, Lévesque MJ, Peter C, Guiot SR, Masson L (2010) Genomic analysis of carbon monoxide utilization and butanol production by Clostridium carboxidivorans strain P7. PLoS ONE 5(9):e13033. doi:10.1371/journal.pone.0013033

    Article  PubMed  Google Scholar 

  • Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84(6):647–657. doi:10.1002/bit.10803

    Article  PubMed  CAS  Google Scholar 

  • Chang L, Ding M, Bao L, Chen Y, Zhou J, Lu H (2011) Characterization of a bifunctional xylanase/endoglucanase from yak rumen microorganisms. Appl Microbiol Biotechnol 90(6):1933–1942. doi:10.1007/s00253-011-3182-x

    Article  PubMed  CAS  Google Scholar 

  • Chassard C, Delmas E, Robert C, Lawson PA, Bernalier-Donadille A (2012) Ruminococcus champanellensis sp. nov., a cellulose-degrading bacterium from human gut microbiota. Int J Syst Evol Microbiol 62(Pt 1):138–143. doi:10.1099/ijs.0.027375-0

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Li K, Pu H, Wu T (2011) Corticosteroids for pneumonia. Cochrane database of systematic reviews issue 3. no: CD007720. doi:10.1002/14651858.CD007720.pub2

  • Distel DL, Morrill W, MacLaren-Toussaint N, Franks D, Waterbury J (2002) Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). Int J Syst Evol Microbiol 52(Pt 6):2261–2269. doi:10.1099/ijs.0.02184-0

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves E, Pereira R, Rocha I, Rocha M (2012) Optimization approaches for the in silico discovery of optimal targets for gene over/underexpression. J Comput Biol 19(2):102–114. doi:10.1089/cmb.2011.0265

    Article  PubMed  Google Scholar 

  • Gowen CM, Fong SS (2010) Genome-scale metabolic model integrated with RNAseq data to identify metabolic states of Clostridium thermocellum. Biotechnol J 5(7):759–767. doi:10.1002/biot.201000084

    Article  PubMed  CAS  Google Scholar 

  • Herrero AA, Gomez RF, Roberts MF (1982) Ethanol-induced changes in the membrane lipid composition of Clostridium thermocellum. Biochim Biophys Acta 693(1):195–204. doi:10.1016/0005-2736(82)90487-4

    Article  PubMed  CAS  Google Scholar 

  • Jarboe LR, Zhang X, Wang X, Moore JC, Shanmugam KT, Ingram LO (2010) Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology. J Biomed Biotechnol 2010:761042. doi:10.1155/2010/761042

    Article  PubMed  Google Scholar 

  • Kim BC, Lee KH, Kim MN, Kim EM, Min SR, Kim HS, Shin KS (2009) Paenibacillus pini sp. nov., a cellulolytic bacterium isolated from the rhizosphere of pine tree. J Microbiol 47(6):699–704. doi:10.1007/s12275-009-0343-z

    Google Scholar 

  • Li LL, McCorkle SR, Monchy S, Taghavi S, van der Lelie D (2009) Bioprospecting metagenomes: glycosyl hydrolases for converting biomass. Biotechnol Biofuels 2:10. doi:10.1186/1754-6834-2-10

    Article  PubMed  Google Scholar 

  • Miroshnichenko ML, Kublanov IV, Kostrikina NA, Tourova TP, Kolganova TV, Birkeland NK, Bonch-Osmolovskaya EA (2008) Caldicellulosiruptor kronotskyensis sp. nov. and Caldicellulosiruptor hydrothermalis sp. nov., two extremely thermophilic, cellulolytic, anaerobic bacteria from Kamchatka thermal springs. Int J Syst Evol Microbiol 58(Pt 6):1492–1496. doi:10.1099/ijs.0.65236-0

    Article  PubMed  CAS  Google Scholar 

  • Podosokorskaya OA, Kublanov IV, Reysenbach AL, Kolganova TV, Bonch-Osmolovskaya EA (2011) Thermosipho affectus sp. nov., a thermophilic, anaerobic, cellulolytic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent. Int J Syst Evol Microbiol 61(Pt 5):1160–1164. doi:10.1099/ijs.0.025197-0

    Article  PubMed  CAS  Google Scholar 

  • Raman B, Pan C, Hurst GB, Rodriguez M Jr, McKeown CK, Lankford PK, Samatova NF, Mielenz JR (2009) Impact of pretreated Switchgrass and biomass carbohydrates on clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS ONE 4(4):e5271. doi:10.1371/journal.pone.0005271

    Article  PubMed  Google Scholar 

  • Ranganathan S, Suthers PF, Maranas CD (2010) OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput Biol 6(4):e1000744. doi:10.1371/journal.pcbi.1000744

    Article  PubMed  Google Scholar 

  • Roberts SB, Gowen CM, Brooks JP, Fong SS (2010) Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production. BMC Syst Biol 4:31. doi:10.1186/1752-0509-4-31

    Article  PubMed  Google Scholar 

  • Semêdo LT, Gomes RC, Linhares AA, Duarte GF, Nascimento RP, Rosado AS, Margis-Pinheiro M, Margis R, Silva KR, Alviano CS, Manfio GP, Soares RM, Linhares LF, Coelho RR (2004) Streptomyces drozdowiczii sp. nov., a novel cellulolytic streptomycete from soil in Brazil. Int J Syst Evol Microbiol 54(Pt 4):1323–1328. doi:10.1099/ijs.0.02844-0

    Article  PubMed  Google Scholar 

  • Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329(5991):559–562. doi:10.1126/science.1187936

    Article  PubMed  CAS  Google Scholar 

  • Shi Z, Blaschek HP (2008) Transcriptional analysis of clostridium beijerinckii NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the shift from acidogenesis to solventogenesis. Appl Environmental Microbiol 74(24):7709–7714. doi:10.1128/AEM.01948-08

    Article  CAS  Google Scholar 

  • Sommer MO, Church GM, Dantas G (2010) A functional metagenomic approach for expanding the synthetic biology toolbox for biomass conversion. Mol Syst Biol 6:360. doi:10.1038/msb.2010.16

    Article  PubMed  Google Scholar 

  • Yang L, Cluett WR, Mahadevan R (2011) EMILiO: a fast algorithm for genome-scale strain design. Metab Eng 13(3):272–281. doi:10.1016/j.ymben

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Pappas KM, Hauser LJ, Land ML, Chen GL, Hurst GB, Pan C, Kouvelis VN, Typas MA, Pelletier DA, Klingeman DM, Chang YJ, Samatova NF, Brown SD (2009a) Improved genome annotation for Zymomonas mobilis. Nat Biotechnol 27(10):893–894. doi:10.1038/nbt1009-893

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Tschaplinski TJ, Engle NL, Carroll SL, Martin SL, Davison BH, Palumbo AV, Rodriguez M Jr, Brown SD (2009b) Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genomics 10:34. doi:10.1186/1471-2164-10-34

    Article  PubMed  Google Scholar 

  • Yang S, Land ML, Klingeman DM, Pelletier DA, Lu TY, Martin SL, Guo HB, Smith JC, Brown SD (2010) Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae. Proc Natl Acad Sci USA 107(23):103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia M. Clay .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Clay, S.M., Fong, S.S. (2013). Integrating Systems and Synthetic Biology. In: Developing Biofuel Bioprocesses Using Systems and Synthetic Biology. SpringerBriefs in Systems Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5580-6_6

Download citation

Publish with us

Policies and ethics