Skip to main content

The Microtubule-Associated C-I Subfamily of TRIM Proteins and the Regulation of Polarized Cell Responses

  • Chapter
  • First Online:
TRIM/RBCC Proteins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 770))

Abstract

TRIM proteins are multidomain proteins that typically assemble into large molecular complexes, the composition of which likely explains the diverse functions that have been attributed to this group of proteins. Accumulating data on the roles of many TRIM proteins supports the notion that those that share identical C-terminal domain architectures participate in the regulation of similar cellular processes. At least nine different C-terminal domain compositions have been identified. This chapter will focus on one subgroup that possess a COS motif, FNIII and SPRY/B30.2 domain as their C-terminal domain arrangement. This C-terminal domain architecture plays a key role in the interaction of all six members of this subgroup with the microtubule cytoskeleton. Accumulating evidence on the functions of some of these proteins will be discussed to highlight the emerging similarities in the cellular events in which they participate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meroni G, Diez-Roux G. TRIM/RBCC, a novel class of’ single protein RING finger’ E3 ubiquitin ligases. Bioessays 2005; 27(11):1147–1157.

    Article  CAS  PubMed  Google Scholar 

  2. Reymond A, Meroni G, Fantozzi A et al. The tripartite motif family identifies cell compartments. EMBO J 2001;20(9):2140–2151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Short KM, Cox TC. Subclassification of the RBCC/TRIM superfamily reveals a novel motif necessary for microtubule binding. J Biol Chem 2006; 281(13):8970–8980.

    Article  CAS  PubMed  Google Scholar 

  4. Lerner M, Corcoran M, Cepeda D et al. The RBCC gene RFP2 (Leu5) encodes a novel transmembrane E3 ubiquitin ligase involved in ERAD. Mol Biol Cell 2007; 18(5):1670–1682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Palmer S, Perry J, Kipling D et al. A gene spans the pseudoautosomal boundary in mice. Proc Natl Acad Sci U S A 1997; 94(22):12030–12035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Quaderi NA, Schweiger S, Gaudenz K et al. Opitz G/BBB syndrome, a defect of midline development, is due to mutations in a new RING finger gene on Xp22. Nat Genet 1997; 17(3):285–291.

    Article  CAS  PubMed  Google Scholar 

  7. De Falco F, Cainarca S, Andolfi G et al. X-linked Opitz syndrome:novel mutations in the MID1 gene and redefinition of the clinical spectrum. Am J Med Genet A 2003; 120A(2):222–228.

    Article  PubMed  Google Scholar 

  8. So J, Suckow V, Kijas Z et al. Mild phenotypes in a series of patients with Opitz GBBB syndrome with MID1 mutations. Am J Med Genet A 2005; 132A(1):1–7.

    Article  PubMed  Google Scholar 

  9. Cox TC, Allen LR, Cox LL et al. New mutations in MID1 provide support for loss of function as the cause of X-linked Opitz syndrome. Hum Mol Genet 2000; 9(17):2553–2562.

    Article  CAS  PubMed  Google Scholar 

  10. Liu J, Prickett TD, Elliott E et al. Phosphorylation and microtubule association of the Opitz syndrome protein mid-1 is regulated by protein phosphatase 2A via binding to the regulatory subunit alpha 4. Proc Natl Acad Sci U S A 2001; 98(12):6650–6655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Short KM, Hopwood B, Yi Z et al. MID 1 and MID2 homo and heterodimerise to tetherthe rapamycin-sensitive PP2A regulatory subunit, alpha 4, to microtubules:implications for the clinical variability of X-linked Opitz GBBB syndrome and other developmental disorders. BMC Cell Biol 2002; 3(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Trockenbacher A, Suckow V, Foerster J et al. MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation. Nat Genet 2001; 29(3):287–294.

    Article  CAS  PubMed  Google Scholar 

  13. Landry JR, Rouhi A, Medstrand P et al. The opitz syndrome gene mid1 is transcribed from a human endogenous retroviral promoter. Mol Biol Evol 2002; 19(11):1934–1942.

    Article  CAS  PubMed  Google Scholar 

  14. Dal Zotto L, Quaderi NA, Elliott R et al. The mouse Mid1 gene:implications for the pathogenesis of Opitz syndrome and the evolution of the mammalian pseudoautosomal region. Hum Mol Genet 1998; 7(3): 489–499.

    Article  Google Scholar 

  15. Pinson L, Auge J, Audollent S et al. Embryonic expression of the human MID1 gene and its mutations in Opitz syndrome. J Med Genet 2004; 41(5):381–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Richman JM, Fu KK, Cox LL et al. Isolation and characterisation of the chick orthologue of the Opitz syndrome gene, Mid1, supports a conserved role in vertebrate development. Int J Dev Biol 2002; 46(4): 441–448.

    CAS  PubMed  Google Scholar 

  17. Suzuki M, Hara Y, Takagi C et al. MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization. Development 2010; 137(14):2329–2339.

    Article  CAS  PubMed  Google Scholar 

  18. Granata A, Quaderi NA. The Opitz syndrome gene MID1 is essential for establishing asymmetric gene expression in Hensen’s node. Dev Biol 2003; 258(2):397–405.

    Article  CAS  PubMed  Google Scholar 

  19. Granata A, Savery D, Hazan J et al. Evidence of functional redundancy between MID proteins implications for the presentation of Opitz syndrome. Dev Biol 2005; 277(2):417–424.

    Article  CAS  PubMed  Google Scholar 

  20. Buchner G, Montini E, Andolfi G et al. MID2, a homologue of the Opitz syndrome gene MID1:similarities in subcellular localization and differences in expression during development. Hum Mol Genet 1999; 8(8): 1397–1407.

    Article  CAS  PubMed  Google Scholar 

  21. Perry J, Short KM, Romer JT et al. FXY2/MID2, a gene related to the X-linked Opitz syndrome gene FXY/ MID1, maps to Xq22 and encodes a FNIII domain-containing protein that associates with microtubules. Genomics 1999; 62(3):385–394.

    Article  CAS  PubMed  Google Scholar 

  22. Cox TC. unpublished data.

    Google Scholar 

  23. Lancioni A, Pizzo M, Fontaneila B et al. Lack of Mid1, the mouse ortholog of the Opitz syndrome gene, causes abnormal development of the anterior cerebellar vermis. J Neurosci 2010; 30(8):2880–2887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berti C, Fontaneila B, Ferrentino R et al. Mig 12, a novel Opitz syndrome gene product partner, is expressed in the embryonic ventral midline and co-operates with Mid1 to bundle and stabilize microtubules. BMC Cell Biol 2004; 5:9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Conway G. A novel gene expressed during zebrafish gastrulation identified by differential RNA display. Mech Dev 1995; 52(2–3):383–391.

    Article  CAS  PubMed  Google Scholar 

  26. Hayes JM, Kim SK, Abitua PB et al. Identification of novel ciliogenesis factors using a new in vivo model for mucociliary epithelial development. Dev Biol 2007; 312(1): 115–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aipoalani DL, O’Callaghan BL et al. Overlapping roles of the glucose-responsive genes, S14 and S14R, in hepatic lipogenesis. Endocrinology 2010; 151(5):2071–2077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Inoue J, Yamasaki K, Ikeuchi E et al. Identification of MIG12 as a mediator for stimulation of lipogenesis by LXR activation. Mol Endocrinol 2011; 25(6):995–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim CW, Moon YA, Park SW et al. Induced polymerization of mammalian acetyl-CoA carboxylase by MIG12 provides a tertiary level of regulation of fatty acid synthesis. Proc Natl Acad Sci U S A 2010; 107(21):9626–9631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kong M, Ditsworth D, Lindsten T et al. Alpha4 is an essential regulator of PP2A phosphatase activity. Mol Cell 2009; 36(1):51–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murata K, Wu J, Brautigan DL. B cell receptor-associated protein alpha 4 displays rapamycin-sensitive binding directly to the catalytic subunit of protein phosphatase 2A. PNAS 1997; 94(20): 10624–10629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nanahoshi M, Tsujishita Y, Tokunaga C et al. Alpha4 protein as a common regulator of type 2A-related serine/threonine protein phosphatases. FEBS Lett 1999; 446(1):108–112.

    Article  CAS  PubMed  Google Scholar 

  33. Virshup DM, Shenolikar S. From promiscuity to precision:protein phosphatases get a makeover. Mol Cell 2009;33(5):537–545.

    Article  CAS  PubMed  Google Scholar 

  34. Prickett TD, Brautigan DL. The alpha4 regulatory subunit exerts opposing allosteric effects on protein phosphatases PP6 and PP2A. J Biol Chem 2006; 281(41):30503–30511.

    Article  CAS  PubMed  Google Scholar 

  35. McConnell JL, Watkins GR, Soss SE et al. Alpha4 is a ubiquitin-binding protein that regulates protein serine/threonine phosphatase 2A ubiquitination. Biochemistry 2010; 49(8):1713–1718.

    Article  CAS  PubMed  Google Scholar 

  36. Le Noue-Newton M, Watkins GR, Zou P et al. The E3 ubiquitin ligase and protein phosphatase 2A (PP2A)-binding domains of the Alpha4 protein are both required for Alpha4 to inhibit PP2A degradation. J Biol Chem 2011; 286(20):17665–17671.

    Article  CAS  Google Scholar 

  37. Han X, Du H, Massiah MA. Detection and characterization of the in vitro e3 ligase activity of the human MID1 protein. J Mol Biol 2011; 407(4):505–520.

    Article  CAS  PubMed  Google Scholar 

  38. Liu E, Knutzen CA, Krauss S et al. Control of mTORC1 signaling by the Opitz syndrome protein MID1. Proc Natl Acad Sci U S A 2011; 108(21):8680–8685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zoncu R, Efeyan A, Sabatini DM. mTOR:from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12(1):21–35.

    Article  CAS  PubMed  Google Scholar 

  40. Gayle SS, Arnold SL, O’Regan RM et al. Pharmacologie inhibition of mTOR improves lapatinib sensitivity in HER2-overexpressing breast cancer cells with primary trastuzumab resistance. Anticancer Agents Med Chem 2012; 12(2):151–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hussein O, Tiedemann K, Murshed M et al. Rapamycin inhibits osteolysis and improves survival in a model of experimental bone metastases. Cancer Lett 2012; 314(2): 176–184.

    Article  CAS  PubMed  Google Scholar 

  42. Trape AP, Katayama ML, Roela RA et al. Gene expression profile in response to doxorubicin-rapamycin combined treatment of HER-2-overexpressing human mammary epithelial cell lines. Mol Cancer Ther 2012; 11(2):464–474.

    Article  CAS  PubMed  Google Scholar 

  43. Dowling RJ, Topisirovic I, Fonseca BD et al. Dissecting the role of mTOR:lessons from mTOR inhibitors. Biochim Biophys Acta 2010; 1804(3):433–439.

    Article  CAS  PubMed  Google Scholar 

  44. Jiang Y, Broach JR. Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast. EMBO J 1999; 18(10):2782–2792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yan G, Shen X, Jiang Y. Rapamycin activates Tap42-associated phosphatases by abrogating their association with Tor complex 1. EMBO J 2006; 25(15):3546–3555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jacinto E, Hall MN. Tor signalling in bugs, brain and brawn. Nat Rev Mol Cell Biol 2003; 4(2): 117–126.

    Article  CAS  PubMed  Google Scholar 

  47. Yamashita T, Inui S, Maeda K et al. The heterodimer of alpha4 and PP2Ac is associated with S6 kinasel in B cells. Biochem Biophys Res Commun 2005; 330(2):439–445.

    Article  CAS  PubMed  Google Scholar 

  48. McDonald WJ, Sangster SM, Moffat LD et al. alpha4 phosphoprotein interacts with EDD E3 ubiquitin ligase and poly(A)-binding protein. J Cell Biochem 2010; 110(5): 1123–1129.

    Article  CAS  PubMed  Google Scholar 

  49. Aranda-Orgilles B, Trockenbacher A, Winter J et al. The Opitz syndrome gene product MID1 assembles a microtubule-associated ribonucleoprotein complex. Hum Genet 2008; 123(2): 163–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aranda-Orgilles B, Rutschow D, Zeller R et al. Protein phosphatase 2A (PP2A)-specific ubiquitin ligase MID1 is a sequence-dependent regulator of translation efficiency controlling 3-phosphoinositide-dependent protein kinase-1 (PDPK-1). J Biol Chem 2011; 286(46):39945–39957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades. Adv Cancer Res 1998; 74:49–139.

    Article  CAS  PubMed  Google Scholar 

  52. Sutherland C. What Are the bona fide GSK3 Substrates? Int J Alzheimers Dis 2011; 2011:505607.

    PubMed  PubMed Central  Google Scholar 

  53. Aranda-Orgilles B, Aigner J, Kunath M et al. Active transport of the ubiquitin ligase MID1 along the microtubules is regulated by protein phosphatase 2A. PloS One 2008; 3(10):e3507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Li Y, Chin LS, Weigel C et al. Spring, anovel RING finger protein that regulates synaptic vesicle exocytosis. J Biol Chem 2001; 276(44):40824–40833.

    Article  CAS  PubMed  Google Scholar 

  55. Chen YA, Scheller RH. SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2001; 2(2):98–106.

    Article  CAS  PubMed  Google Scholar 

  56. Cahill AL, Herring BE, Fox AP. Stable silencing of SNAP-25 in PC12 cells by RNA interference. BMC Neurosci 2006; 7:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Tao-Cheng JH, Du J, McBain CJ. Snap-25 is polarized to axons and abundant along the axolemma:an immunogold study of intact neurons. J Neurocytol 2000; 29(1):67–77.

    Article  CAS  PubMed  Google Scholar 

  58. Dhingra V, Li X, Liu Y et al. Proteomic profiling reveals that rabies virus infection results in differential expression of host proteins involved in ion homeostasis and synaptic physiology in the central nervous system. J Neurovirol 2007; 13(2):107–117.

    Article  CAS  PubMed  Google Scholar 

  59. Tanji K, Kamitani T, Mori F et al. TRIM9, a novel brain-specific E3 ubiquitin ligase, is repressed in the brain of Parkinson’s disease and dementia with Lewy bodies. Neurobiol Dis 2010; 38(2):210–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schlossmacher MG, Frosch MP, Gai WP et al. Parkin localizes to the Lewy bodies of Parkinson disease and dementia with Lewy bodies. AM J Pathol 2002; 160(5): 1655–1667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Spillantini MG, Schmidt ML, Lee VM et al. Alpha-synuclein in Lewy bodies. Nature 1997; 388(6645): 839–840.

    Article  CAS  PubMed  Google Scholar 

  62. Fanelli M, Fantozzi A, De Luca P et al. The coiled-coil domain is the structural determinant for mammalian homologues of Drosophila Sina-mediated degradation of promyelocytic leukemia protein and other tripartite motif proteins by the proteasome. J Biol Chem 2004; 279(7):5374–5379.

    Article  CAS  PubMed  Google Scholar 

  63. Alexander M, Selman G, Seetharaman A et al. MADD-2, ahomolog of the Opitz syndrome protein MID1, regulates guidance to the midline through UNC-40 in Caenorhabditis elegans. Dev Cell 2010; 18(6):961–972.

    Article  CAS  PubMed  Google Scholar 

  64. Hao JC, Adler CE, Mebane L et al. The tripartite motif protein MADD-2 functions with the receptor UNC-40 (DCC) in Netrin-mediated axon attraction and branching. Dev Cell 2010; 18(6): 950–960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Song S, Ge Q, Wang J et al. TRIM-9 functions in the UNC-6/UNC-40 pathway to regulate ventral guidance. J Genet Genomics 2011; 38(1):1–11.

    Article  PubMed  Google Scholar 

  66. Sun KLW, Correia JP, Kennedy TE. Netrins:versatile extracellular cues with diverse functions. Development 2011; 138(11):2153–2169.

    Article  CAS  Google Scholar 

  67. Chang C, Adler CE, Krause M et al. MIG-10/lamellipodin and AGE-1/PI3K promote axon guidance and outgrowth in response to slit and netrin. Curr Biol 2006; 16(9):854–862.

    Article  CAS  PubMed  Google Scholar 

  68. Quinn CC, Pfeil DS, Chen E et al. UNC-6/netrin and SLT-1/slit guidance cues orient axon outgrowth mediated by MIG-10/RIAM/lamellipodin. Curr Biol 2006; 16(9):845–853.

    Article  CAS  PubMed  Google Scholar 

  69. Quinn CC, Wadsworth WG. Axon guidance:asymmetric signaling orients polarized outgrowth. Trends Cell Biol 2008; 18(12):597–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tcherkezian J, Brittis PA, Thomas F et al. Transmembrane receptor DCC associates with protein synthesis machinery and regulates translation. Cell 2010; 141(4):632–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kitamura K, Tanaka H, Nishimune Y. Haprin, a novel haploid germ cell-specific RING finger protein involved in the acrosome reaction. J Biol Chem 2003; 278(45):44417–44423.

    Article  CAS  PubMed  Google Scholar 

  72. Kierszenbaum AL. Fusion of membranes during the acrosome reaction:atale oftwo SNAREs. Mol Reprod Dev 2000; 57(4):309–310.

    Article  CAS  PubMed  Google Scholar 

  73. Kitamura K, Tanaka H, Nishimune Y. The RING-fingerproteinhaprin:domains and function in the acrosome reaction. Curr Protein Pept Sci 2005; 6(6):567–574.

    Article  CAS  PubMed  Google Scholar 

  74. Cuykendall TN, Houston DW. Vegetally localized Xenopus trim36 regulates cortical rotation and dorsal axis formation. Development 2009; 136(18):3057–3065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yoshigai E, Kawamura S, Kuhara S et al. Trim36/Haprin plays a critical role in the arrangement of somites during Xenopus embryogenesis. Biochem Biophys Res Commun 2009; 378(3):428–432.

    Article  CAS  PubMed  Google Scholar 

  76. Kong M, Bui TV, Ditsworth D et al. The PP2 A-associated protein alpha4 plays a critical role in the regulation of cell spreading and migration. J Biol Chem 2007; 282(40):29712–29720.

    Article  CAS  PubMed  Google Scholar 

  77. Miyajima N, Maruyama S, Nonomura K et al. TRIM36 interacts with the kinetochore protein CENP-H and delays cell cycle progression. Biochem Biophys Res Commun 2009; 381(3):383–387.

    Article  CAS  PubMed  Google Scholar 

  78. Sakamoto T, Uezu A, Kawauchi S et al. Mass spectrometric analysis of microtubule cosedimented proteins from rat brain. Genes Cells 2008; 13(4):295–312.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cox, T.C. (2012). The Microtubule-Associated C-I Subfamily of TRIM Proteins and the Regulation of Polarized Cell Responses. In: Meroni, G. (eds) TRIM/RBCC Proteins. Advances in Experimental Medicine and Biology, vol 770. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5398-7_8

Download citation

Publish with us

Policies and ethics