Skip to main content

Neural Modelling: Neural Information Processing and Selected Applications

  • Chapter
  • First Online:
Neural Engineering

Abstract

The main purpose of neural modelling is to describe, with theories and principles of engineering and computer science, mental processes by which living organisms perceive, act, learn, and remember such that the operation of the nervous systems can be better understood. These models serve as platforms for simulating brain activities, leading not only to deeper insights to how human brain works but also why it fails. The models can then be applied to assist developing solutions and devices for alleviating brain disorders and restoring lost body functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intel 20(11):1254–1259

    Article  Google Scholar 

  2. Yao J, Zhang YT (2002) The application of bionic wavelet transform to speech signal processing in cochlear implants using neural network simulations. IEEE Trans Biomed Eng 49(11):1299–1309

    Article  Google Scholar 

  3. Yao J, Zhang YT (2001) Bionic wavelet transform: a new time-frequency method based on an auditory model. IEEE Trans Biomed Eng 48(8):856–863

    Article  Google Scholar 

  4. Sayadi O, Shamsollahi MB (2008) Model-based fiducial points extraction for baseline wandered electrocardiograms. IEEE Trans Biomed Eng 55(1):347–351

    Article  Google Scholar 

  5. US National Academy of Engineering. The unveiling of the grand challenges for engineering: reverse-engineer the brain, 15 February 2008.

    Google Scholar 

  6. Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233(4771):1416–1419

    Article  Google Scholar 

  7. Olshausen BA, Field DJ (1997) Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Res 37(23):3311–3325

    Article  Google Scholar 

  8. Pillow JW, Shlens J et al (2008) Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454(7207):995–999

    Article  Google Scholar 

  9. Pouget A, Dayan P et al (2000) Information processing with population codes. Nat Rev Neurosci 1(2):125–132

    Article  Google Scholar 

  10. Bassett DS, Gazzaniga MS (2011) Understanding complexity in the human brain. Trends Cogn Sci 15(5):200–209

    Article  Google Scholar 

  11. Breakspear M, Stam CJ (2005) Dynamics of a neural system with a multiscale architecture. Philosl Trans R Soc B Biol Sci 360(1457):1051–1074

    Article  Google Scholar 

  12. Bressler SL, Tognoli E (2006) Operational principles of neurocognitive networks. Int J Psychophysiol 60(2):139–148

    Article  Google Scholar 

  13. Chialvo DR (2010) Emergent complex neural dynamics. Nat Phys 6(10):744–750

    Article  Google Scholar 

  14. Deco G, Jirsa VK et al (2008) The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput Biol 4(8):e1000092

    Article  Google Scholar 

  15. Buxhoeveden DP, Casanova MF (2002) The minicolumn hypothesis in neuroscience. Brain 125:935–951

    Article  Google Scholar 

  16. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Neuroplasticity: Changes in grey matter induced by training. Nature 427(6972):311–312

    Article  Google Scholar 

  17. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional system. Nat Rev Neurosci 10(3):186–198

    Article  Google Scholar 

  18. Fingelkurts AA, Kähkönen S (2005) Functional connectivity in the brain–is it an elusive concept? Neurosci Biobehav Rev 28(8):827–836

    Article  Google Scholar 

  19. Levin N, Dumoulin SO, Winawer J et al (2010) Cortical Maps and White Matter Tracts following Long Period of Visual Deprivation and Retinal Image Restoration. Neuron 65(1):21–31

    Article  Google Scholar 

  20. Haken H, Kelso JAS, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Biol Cybern 51:347–356

    Article  MathSciNet  MATH  Google Scholar 

  21. Eden UT, Frank LM, Barbieri R, Solo V, Brown EN (2004) Dynamic analysis of neural encoding by point process adaptive filtering. Neural Comput 16(5):971–998

    Article  MATH  Google Scholar 

  22. Bressler SL, Kelso JAS (2001) Cortical coordination dynamics and cognition. Trends Cogn Sci 5(1):26–36

    Article  Google Scholar 

  23. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Google Scholar 

  24. Brugge JF (1992) An overview of central auditory processing. In: Popper N, Richard RF (eds) The mammalian auditory pathway: neurophysiology. Springer, New York, NY, pp 1–33

    Chapter  Google Scholar 

  25. Hudspeth AJ (2008) Making an effort to listen: mechanical amplification in the ear. Neuron 59(4):530–545

    Article  Google Scholar 

  26. Schoonhoven R, Prijs VF, Frijns JH (1997) Transmitter release in inner hair cell synapses: a model analysis of spontaneous and driven rate properties of cochlear nerve fibres. Hear Res 113(1–2):247–260

    Article  Google Scholar 

  27. Schalk TB, Sachs MB (1980) Nonlinearities in auditory-nerve fiber responses to bandlimited noise. J Acoust Soc Am 67(3):907–913

    Article  Google Scholar 

  28. Winter IM, Robertson D, Yates GK (1990) Diversity of characteristic frequency rate-intensity functions in guinea pig auditory nerve fibers. Hear Res 45(3):191–202

    Article  Google Scholar 

  29. Sumner CJ, Lopez-Poveda EA, O LP, Meddis R (2002) A revised model of the inner-hair cell and auditory-nerve complex. J Acoust Soc Am 111(5):2178–2188

    Google Scholar 

  30. Nuttall AL, Dolan DF (1996) Steady-state sinusoidal velocity responses of the basilar membrane in guinea pig. J Acoust Soc Am 99(3):1556–1565

    Article  Google Scholar 

  31. Meddis R, O LP, Lopez-Poveda EA (2001) A computational algorithm for computing nonlinear auditory frequency selectivity. J Acoust Soc Am 109:2852–2861

    Google Scholar 

  32. Meddis R (1986) Simulation of mechanical to neural transduction in the auditory receptor. J Acoust Soc Am 79(3):702–711

    Article  Google Scholar 

  33. Meddis R (1988) Simulation of auditory-neural transduction: further studies. J Acoust Soc Am 83(3):1056–1063

    Article  Google Scholar 

  34. Corey DP, Hudspeth AJ (1983) Kinetics of the receptor current in bullfrog saccular hair cells. J Neurosci 3(5):962–976

    Google Scholar 

  35. Hudspeth AJ, Lewis RS (1988) Kinetic analysis of voltage- and ion-dependent conductances in saccular hair cells of the bull-frog, Rana catesbeiana. J Physiol 400:237–274

    Google Scholar 

  36. Kidd RC, Weiss TF (1990) Mechanisms that degrade timing information in the cochlea. Hear Res 49(1–3):181–207

    Article  Google Scholar 

  37. Hewitt MJ, Meddis R (1991) An evaluation of eight computational models of mammalian inner hair-cell function. J Acoust Soc Am 90:904–917

    Article  Google Scholar 

  38. Yates GK (1990) Basilar membrane nonlinearity and its influence on auditory nerve rate-intensity functions. Hear Res 50(1–2):145–162

    Article  Google Scholar 

  39. Sumner CJ, Lopez-Poveda EA, O LP, Meddis R (2003) Adaptation of revised inner-hair cell model. J Acoust Soc Am 113(2):893–901

    Article  Google Scholar 

  40. Zilany MSA, Bruce IC, Nelson PC, Carney LH (2009) A phenomenological model of the synapse between the inner hair cell and auditory nerve: Long-term adaptation with power-law dynamics. J Acoust Soc Am 126(5):2390–2412

    Article  Google Scholar 

  41. Woo J, Miller CA, Abbas PJ (2009) Simulation of the electrically stimulated cochlear neuron: modeling adaptation to trains of electric pulses. IEEE Trans Biomed Eng 56(5):1348–1359

    Article  Google Scholar 

  42. Bruce IC, Sachs MB, Young ED (2003) An auditory-periphery model of the effects of acoustic trauma on auditory nerve responses. J Acoust Soc Am 113(1):369–388

    Article  Google Scholar 

  43. Rattay F, Lutter P, Felix H (2001) A model of the electrically excited human cochlear neuron I Contribution of neural substructures to the generation and propagation of spikes. Hear Res 153(1–2):43–63

    Article  Google Scholar 

  44. Rattay F, Leao RN, Felix H (2001) A model of the electrically excited human cochlear neuron II. Influence of the three-dimensional cochlear structure on neural excitability. Hear Res 153(1–2):64–79

    Article  Google Scholar 

  45. Zheng L, Zhang YT, Yang FS, Ye DT (1999) Synthesis and decomposition of transient-evoked otoacoustic emissions based on an active auditory model. IEEE Trans Biomed Eng 46(9):1098–1106

    Article  Google Scholar 

  46. Romanski LM (2007) Representation and Integration of Auditory and Visual Stimuli in the Primate Ventral Lateral Prefrontal Cortex. Cereb Cortex 17:i61–i69

    Article  Google Scholar 

  47. Kandel ER, Schwartz JH, Jessell TM (2000) Principles of Neural Science, 4th edn. Elsevier, New York

    Google Scholar 

  48. Gilbert CD, Sigman M (2007) Brain States: Top-Down Influences in Sensory Processing. Neuron 54(5):677–696

    Article  Google Scholar 

  49. Deco G, Rolls ET (2004) A neurodynamical cortical model of visual attention and invariant object recognition. Vision Res 44(6):621–642

    Article  Google Scholar 

  50. Itti L, Koch C (2001) Computational modelling of visual attention. Nat Rev Neurosci 2(3):194–203

    Article  Google Scholar 

  51. Deco G, Rolls ET (2005) Attention, short-term memory, and action selection: a unifying theory. Prog Neurobiol 76(4):236–256

    Article  Google Scholar 

  52. Baluch F, Itti L (2011) Mechanisms of top-down attention. Trends Neurosci 34(4):210–224

    Article  Google Scholar 

  53. Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7:335–346

    Article  Google Scholar 

  54. DeBoer R, Karemaker J et al (1987) Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. Am J Physiol 253(3):H680–H689

    Google Scholar 

  55. Seidel H, Herzel H (1995) Modeling heart rate variability due to respiration and baroreflex. In: Mosekilde E, Mouritsen OG (eds) Modeling the dynamics of biological systems. Springer, Berlin, pp 205–229

    Chapter  Google Scholar 

  56. Ottesen JT (1997) Modelling of the baroreflex-feedback mechanism with time-delay. J Math Biol 36(1):41–63

    Article  MathSciNet  MATH  Google Scholar 

  57. Dudkowska A, Makowiec D (2008) Seidel - Herzel model of human baroreflex in cardiorespiratory system with stochastic delays. J Math Biol 57(1):111–137

    Article  MathSciNet  MATH  Google Scholar 

  58. Olufsen MS, Tran HT, Ottesen JT, Lipsitz LA, Novak V (2006) Modeling baroreflex regulation of heart rate during orthostatic stress. Am J Physiol Regulat Integr Comparat 291(5):R1355–R1368

    Article  Google Scholar 

  59. Wang L, Poon CCY, Zhang YT (2010) The non-invasive and continuous estimation of cardiac output using photoplethysmogram and electrocardiogram during incremental exercise, Physiol Meas 31(5):715–726

    Article  Google Scholar 

  60. Poon CCY, Zhang YT (2005) Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time. In: Proceedings of the 27th annual international conference on IEEE engineering in medicine and biology society, Shanghai, P.R.C., 1–4 September 2005, pp 5877–5880

    Google Scholar 

  61. Poon CCY, Zhang YT, Liu YB (2006) Modeling of pulse transit time under the effects of hydrostatic pressure for cuffless blood pressure measurements. In: Proceedings of the 3rd IEEE-EMBS international summer school and symposium on medical devices and biosensors, MIT, Boston, USA, 4–6 September 2006, pp 65–68.

    Google Scholar 

  62. Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5):1063–1070

    Article  Google Scholar 

  63. Saunders JC, Ventetuolo CE, Plontke SKR, Weiss BA (2002) Coding of Sound Intensity in the Chick Cochlear Nerve. J Neurophysiol 88(6):2887–2898

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Hong Kong Innovation Technology Fund (ITF), the 973 Project Fund (2010CB732606) and the Guangdong LCHT Innovation Research Team Fund in China. The authors are grateful to Standard Telecommunication Ltd., Bird International Ltd., Bright Steps Corporation and PCCW for their supports to the ITF projects. The authors are thankful to Dr. Ting Ma and Ms. Yingying Gu for their contributions to an earlier version of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Ting Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Poon, C.C.Y., Zheng, Y., Zhang, YT. (2013). Neural Modelling: Neural Information Processing and Selected Applications. In: He, B. (eds) Neural Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5227-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5227-0_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-5226-3

  • Online ISBN: 978-1-4614-5227-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics