Skip to main content

Confocal Laser Scanning Microscopy Using Scattering as the Contrast Mechanism

  • Reference work entry
  • First Online:
  • 2046 Accesses

Abstract

Confocal laser scanning microscopy (CLSM) is best known and widely used for fluorescence imaging. However, any commercial CLSM can be operated in reflectance mode by setting the microscope’s detector to accept the excitation laser wavelength. In this mode, the images are based on the scattering properties of the cell or tissue. This chapter discusses reflectance-mode CLSM (rCLSM), the mechanisms of contrast involved in such images, and examples of how rCLSM is being used to study tissue properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.M. Schmitt, A. Knüttel, R.F. Bonner, Measurement of optical properties of biological tissues by low-coherence reflectometry. Appl. Opt. 32, 6032–6042 (1993)

    Article  ADS  Google Scholar 

  2. T. Collier, M. Follen, A. Malpica, R. Richards-Kortum, Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy. Appl. Opt. 44, 2072–2081 (2005)

    Article  ADS  Google Scholar 

  3. D. Levitz, L. Thrane, M.H. Frosz, P.E. Andersen, C.B. Andersen, J. Valanciunaite, J. Swartling, S. Andersson-Engels, P.R. Hansen, Determination of optical scattering properties of highly-scattering media in optical coherence tomography images. Opt. Express 12, 249–259 (2004)

    Article  ADS  Google Scholar 

  4. S.L. Jacques, D. Levitz, R. Samatham, N. Choudhury, F. Truffer, D.S. Gareau, Specifying tissue optical properties using confocal reflectance microscope, in Biomedical Applications of Light Scattering, ed. by V. Backman, A. Wax (McGraw-Hill, New York, 2009)

    Google Scholar 

  5. D.S. Gareau, In Vivo Confocal Microscopy in Turbid Media, Ph.D. Dissertation, Oregon Health & Science University, Portland, 2006

    Google Scholar 

  6. R. Samatham, S.L. Jacques, P. Campagnola, Optical properties of mutant vs wildtype mouse skin measured by reflectance-mode confocal scanning laser microscopy (rCSLM). J. Biomed. Opt. 13(4), 041309 (2008)

    Article  ADS  Google Scholar 

  7. Y. Fu, Using Optical Methods to Monitor and Administer Photodynamic Therapy to Oral Bacteria, Ph.D. Dissertation, Oregon Health & Science University, Portland, 2008

    Google Scholar 

  8. S. Jacques, R. Samatham, N. Choudhury, and D.S. Gareau, Specifying tissue optical properties using axial dependence of confocal reflectance images: confocal scanning laser microscopy and optical coherence tomography, in Biomedical Applications of Light Scattering, Proc. of SPIE, ed. by A. Wax, V. Backman, 6446, 64460N (2007)

    Google Scholar 

  9. D. Levitz, M.T. Hinds, N. Choudhury, N.T. Tran, S.R. Hanson, S.L. Jacques, Quantitative characterization of developing collagen gels using optical coherence tomography. J. Biomed. Opt. 15(2), 026019 (2010)

    Article  ADS  Google Scholar 

  10. D. Levitz, M.T. Hinds, A. Ardeshiri, S.R. Hanson, S.L. Jacques, Non-destructive label-free monitoring of local smooth muscle cell remodeling of collagen gels using optical coherence tomography. Biomaterials 31(32), 8210–8217 (2010)

    Article  Google Scholar 

  11. R. Samatham, K.G. Phillips, S.L. Jacques, Assessment of optical clearing agents using reflectance-mode confocal scanning laser microscopy. J. Innov. Opt. Health Sci. 3(3), 183–188 (2010)

    Article  Google Scholar 

  12. R.A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S.L. Jacques, D.D. Sampson, Parametric imaging of cancer with optical coherence tomography. J. Biomed. Opt. 15(4), 046029 (2010)

    Article  ADS  Google Scholar 

  13. K.G. Phillips, R. Samatham, P. Thuillier, S.L. Jacques, In vivo measurement of epidermal thickness changes associated with tumor promotion in murine models. J. Biomed. Opt. 15(4), 041514 (2010)

    Article  ADS  Google Scholar 

  14. K.G. Phillips, Y. Wang, D. Levitz, N. Choudhury, E. Swanzey, J. Lagowski, M. Kulesz-Martin, S.L. Jacques, Dermal reflectivity determined by optical coherence tomography is an indicator of epidermal hyperplasia and dermal edema within inflamed skin. J. Biomed. Opt. 16(4), 040503 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L. Jacques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Jacques, S.L. (2013). Confocal Laser Scanning Microscopy Using Scattering as the Contrast Mechanism. In: Tuchin, V. (eds) Handbook of Coherent-Domain Optical Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5176-1_28

Download citation

Publish with us

Policies and ethics