Skip to main content

Toxicogenomic Evaluation of Nanomaterials

  • Chapter
  • First Online:
Nanotechnology in Dermatology

Abstract

The ongoing search for specialty substances with unique physical and chemical properties has motivated the development of numerous types of metal oxide nanomaterials, but concerns remain regarding biological effects of particles that are comparable in size to ultrafine air pollution (d < 100 nm). Much of the nanoparticle toxicological research has been on inhalation and intact-skin dermal exposures. Lung epithelial cells exposed to oxide nanoparticles show diverse responses, most notably upregulation of pro-inflammatory signaling pathways. This chapter addresses potential etiologies, mechanisms, and methodologies for investigating potential unforeseen toxicities of nanoparticles that are likely to occur in skin as nanoproducts become more and more available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Song Y, Li X, Du X. Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J. 2009;34(3):559–67.

    Article  PubMed  CAS  Google Scholar 

  2. Song Y, Tang S. Nanoexposure, unusual diseases, and new health and safety concerns. ScientificWorldJournal. 2011;11:1821–8.

    Article  PubMed  CAS  Google Scholar 

  3. Monteiro-Riviere NA, Wiench K, Landsiedel R, Schulte S, Inman AO, Riviere JE. Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol Sci. 2011;123(1):264–80.

    Article  PubMed  CAS  Google Scholar 

  4. Moos PJ, Olszewski K, Honeggar M, et al. Responses of human cells to ZnO nanoparticles: a gene transcription study. Metallomics. 2011;3(11):1199–211.

    Article  PubMed  CAS  Google Scholar 

  5. dos Santos T, Varela J, Lynch I, Salvati A, Dawson KA. Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines. Small. 2011;7(23):3341–9.

    Article  PubMed  Google Scholar 

  6. Chen M, von Mikecz A. Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp Cell Res. 2005;305(1):51–62.

    Article  PubMed  CAS  Google Scholar 

  7. Sen B, Mahadevan B, DeMarini DM. Transcriptional responses to complex mixtures: a review. Mutat Res. 2007;636(1–3):144–77.

    PubMed  CAS  Google Scholar 

  8. Rouse RL, Murphy G, Boudreaux MJ, Paulsen DB, Penn AL. Soot nanoparticles promote biotransformation, oxidative stress, and inflammation in murine lungs. Am J Respir Cell Mol Biol. 2008;39(2):198–207.

    Article  PubMed  CAS  Google Scholar 

  9. Fujita K, Horie M, Kato H, et al. Effects of ultrafine TiO2 particles on gene expression profile in human keratinocytes without illumination: involvement of extracellular matrix and cell adhesion. Toxicol Lett. 2009;191(2–3):109–17.

    Article  PubMed  CAS  Google Scholar 

  10. Inoue K, Takano H, Ohnuki M, et al. Size effects of nanomaterials on lung inflammation and coagulatory disturbance. Int J Immunopathol Pharmacol. 2008;21(1):197–206.

    PubMed  CAS  Google Scholar 

  11. Waters KM, Masiello LM, Zangar RC, et al. Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol Sci. 2009;107(2):553–69.

    Article  PubMed  CAS  Google Scholar 

  12. Fujita K, Morimoto Y, Ogami A, et al. Gene expression profiles in rat lung after inhalation exposure to C60 fullerene particles. Toxicology. 2009;258(1):47–55.

    Article  PubMed  CAS  Google Scholar 

  13. Ellinger-Ziegelbauer H, Pauluhn J. Pulmonary toxicity of multi-walled carbon nanotubes (Baytubes) relative to alpha-quartz following a single 6 h inhalation exposure of rats and a 3 months post-exposure period. Toxicology. 2009;266(1–3):16–29.

    Article  PubMed  CAS  Google Scholar 

  14. Zollanvari A, Cunningham MJ, Braga-Neto U and Dougherty ER. Analysis and modeling of time-course gene-expression profiles from nanomaterial-exposed primary human epidermal keratinocytes. BMC Bioinformatics. 2009;10 Suppl 11:S10

    Google Scholar 

  15. Yang Y, Qu Y, Lu X. Global gene expression analysis of the effects of gold nanoparticles on human dermal fibroblasts. J Biomed Nanotechnol. 2010;6(3):234–46.

    Article  PubMed  CAS  Google Scholar 

  16. Ma J, Lu X, Huang Y. Genomic analysis of cytotoxicity response to nanosilver in human dermal fibroblasts. J Biomed Nanotechnol. 2011;7(2):263–75.

    Article  PubMed  CAS  Google Scholar 

  17. Hughes TR, Marton MJ, Jones AR, et al. Functional discovery via a compendium of expression profiles. Cell. 2000;102(1):109–26.

    Article  PubMed  CAS  Google Scholar 

  18. Prow TW, Monteiro-Riviere NA, Inman AO, et al. Quantum dot penetration into viable human skin. Nanotoxicology. 2012;6(2):173–85.

    Article  PubMed  CAS  Google Scholar 

  19. Xia XR, Monteiro-Riviere NA, Riviere JE. Skin penetration and kinetics of pristine fullerenes (C60) topically exposed in industrial organic solvents. Toxicol Appl Pharmacol. 2010;242(1):29–37.

    Article  PubMed  CAS  Google Scholar 

  20. Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology. 2007;230(1):90–104.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John M. Veranth or Philip J. Moos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Veranth, J.M., Leachman, S.A., Moos, P.J. (2013). Toxicogenomic Evaluation of Nanomaterials. In: Nasir, A., Friedman, A., Wang, S. (eds) Nanotechnology in Dermatology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5034-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5034-4_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5033-7

  • Online ISBN: 978-1-4614-5034-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics