Skip to main content

Application of Nanomedicine in Wound Healing

  • Chapter
  • First Online:
Nanotechnology in Dermatology

Abstract

Emergence of new materials and technology and their broad application is invariably identified as the symbol of scientific progress in any era. With recent advancement and development of nanotechnology, it has been made possible to engineer many kinds of materials into various shapes and sizes at the nanometer level. The sizes of these nanoparticles usually vary from 1 nm to 100 nm, which is much smaller than the generally targeted cells in the organism (Fig. 21.1), and will exhibit remarkably differential and amazing biological activities due to their unusual physical and chemical properties due to enhanced surface area to volume ratio for a given mass [1, 2]. This means that nano-sized particles are more likely to have increased cell surface interactions and to gain access into internal cell environments, resulting in significant biomedical effect or efficacy. In recent years, burgeoning interest in the medical applications of nanotechnology has led to the emergence of a new scientific field—Nanomedicine [3–8]. Nanomedicine, as the most important cross-link subject between nanoscience and biomedicine, is defined as the process of disease prevention, diagnosis, and therapeutic using nanomaterials or nanotechnology [9, 10].

In recent years nanotechnology has been emerging as a rapidly growing and challenging research field, and many nanomaterials have gained access into daily life, including biomedical applications. In this chapter, we review the use of various nanomatericals in nanomedicine in the field of skin wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aiken III JD, Finke RGJ. J Mol Catal A Chem. 1999;145:1–44.

    Article  CAS  Google Scholar 

  2. Albrecht MA, Evans CW, Colin L. Green chemistry and the health implications of nanoparticles. Green Chem. 2006;8:417–32.

    Article  CAS  Google Scholar 

  3. Nanomedicine: grounds for optimism, and a call for papers. Lancet. 2003;362:673

    Google Scholar 

  4. Freitas Jr RA. Nanodentistry. J Am Dent Assoc. 2000;131:1559–66.

    PubMed  Google Scholar 

  5. Freitas Jr RA. The future of nanofabrication and molecular scale devices in nanomedicine. Stud Health Technol Inform. 2002;80:45–59.

    PubMed  Google Scholar 

  6. Bogunia-Kubik K, Sugisaka M. From molecular biology to nanotechnology and nanomedicine. Biosystems. 2002;65:123–38.

    Article  PubMed  CAS  Google Scholar 

  7. Haberzettl CA. Nanomedicine: destination or journey? Nanotechnology. 2002;13:R9–13.

    Article  CAS  Google Scholar 

  8. Emerich DF, Thanos CG. Nanotechnology and medicine. Expert Opin Biol Ther. 2003;3:655–63.

    Article  PubMed  CAS  Google Scholar 

  9. Robert A, Freitas Jr RA. What is nanomedicine? Nanomedicine. 2005;1:2–9.

    Article  Google Scholar 

  10. Jain KK. Nanodiagnostics: application of nanotechnology in molecular iagnostics. Expert Rev Mol Diagn. 2003;3:153–61.

    Article  PubMed  CAS  Google Scholar 

  11. Lau K, Paus R, Tiede S, et al. Exploring the role of stem cells in cutaneous wound healing. Exp Dermatol. 2009;18:921–33.

    Article  PubMed  CAS  Google Scholar 

  12. Malaviya R, Ikeda T, Ross E, et al. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature. 1996;381:77–80.

    Article  PubMed  CAS  Google Scholar 

  13. Szpaderska A, Egozi E, Gamelli R, et al. The effect of thrombocytopenia on dermal wound healing. J Invest Dermatol. 2003;120:1130–7.

    Article  PubMed  CAS  Google Scholar 

  14. Weber A, Knop J, Maurer M. Pattern analysis of human cutaneous mast cell populations by total body surface mapping. Br J Dermatol. 2003;148:625–31.

    Article  Google Scholar 

  15. Maurer M, Theoharides T, Granstein RD, et al. What is the physiological function of mast cells? Exp Dermatol. 2003;12:886–910.

    Article  PubMed  CAS  Google Scholar 

  16. Jo Ellen F, QiJing L, Lina W, et al. The cxc chemokine cCAF stimulates differentiation of fibroblasts into myofibroblasts and accelerates wound closure. J Cell Biol. 2002;156(1):161–72.

    Article  Google Scholar 

  17. Stickler DJ. Biomaterials to prevent nosocomial infections: is silver the gold standard? Curr Opin Infect Dis. 2000;13:389–93.

    Article  PubMed  CAS  Google Scholar 

  18. Warriner R, Burrell R. Infection and the chronic wound: a focus on silver. Adv Skin Wound Care. 2005;18 Suppl 1:1–2.

    Google Scholar 

  19. Hussain S, Ferguson C. Silver sulphadiazine cream in burns. Emerg Med J. 2006;23:929–32.

    Article  PubMed  Google Scholar 

  20. Stephen-Haynes J, Toner L. Assessment and management of wound infection: the role of silver. Br J Community Nurs. 2007;12:S6–12.

    Google Scholar 

  21. Muangman P, Muangman S, Opasanon S, et al. Benefit of hydrocolloid SSD dressing in the outpatient management of partial thickness burns. J Med Assoc Thai. 2009;92:1300–5.

    PubMed  Google Scholar 

  22. Uygur F, Oncul O, Evinc R, et al. Effects of three different topical antibacterial dressings on Acinetobacter baumannii-contaminated full-thickness burns in rats. Burns. 2009;35:270–3.

    Article  PubMed  Google Scholar 

  23. Modak SM, Fox CL. Biochem Pharmacol. 1973;22:2391–404.

    Article  PubMed  CAS  Google Scholar 

  24. Bragg PD, Rainnie DJ. The effect of silver ions on the repiratory chain of Escherichia Coli. Can J Microbiol. 1974;20:883–9.

    Article  PubMed  CAS  Google Scholar 

  25. Feng QL, Wu J, Chen GQ, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52:662–8.

    Article  PubMed  CAS  Google Scholar 

  26. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275:177–82.

    Article  PubMed  CAS  Google Scholar 

  27. Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nano­technology. 2005;16:2346–53.

    Article  PubMed  CAS  Google Scholar 

  28. Song HY, Ko KK, Oh LH, et al. Fabrication of silver nanoparticles and their antimicrobial mechanisms. Eur Cells Mater. 2006;11 Suppl 1:58.

    Google Scholar 

  29. Shin SH, Ye MK, Kim HS, et al. The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol. 2007;7(13):1813–8.

    Article  PubMed  CAS  Google Scholar 

  30. Bhol KC, Schechter PJ. Effects of nanocrystalline silver (NPI 32101) in a rat model of ulcerative colitis. Dig Dis Sci. 2007;52:2732–42.

    Article  PubMed  CAS  Google Scholar 

  31. Nadworny PL, Wang J, Tredget EE, et al. Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomedicine. 2008;4:241–51.

    Article  PubMed  CAS  Google Scholar 

  32. Wong KK, Cheung SO, Huang L, et al. Further evidence of the anti-inflammatory effects of silver nanoparticles. ChemMedChem. 2009;4:1129–35.

    Article  PubMed  CAS  Google Scholar 

  33. Foldbjerg R, Olesen P, Hougaard M, et al. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett. 2009;190:156–62.

    Article  PubMed  CAS  Google Scholar 

  34. Wright JB, Lam K, Buret AG, et al. Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing. Wound Repair Regen. 2002;10:141–51.

    Article  PubMed  Google Scholar 

  35. Warriner R, Burrell R. Infection and the chronic wound: a focus on silver. Adv Skin Wound Care. 2005;18 Suppl 1:2–12.

    Article  PubMed  Google Scholar 

  36. Yang W, Shen C, Ji Q, et al. Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology. 2009;20:085102.

    Article  PubMed  Google Scholar 

  37. Park MH, Kim KH, Lee HH, et al. Selective inhibitory potential of silver nanoparticles on the harmful cyanobacterium Microcystis aeruginosa. Biotechnol Lett. 2010;32:423–8.

    Article  PubMed  CAS  Google Scholar 

  38. Wang H, Law N, Pearson G, et al. Impact of silver(I) on the metabolism of Shewanella oneidensis. J Bacteriol. 2010;192:1143–50.

    Article  PubMed  CAS  Google Scholar 

  39. Dror-Ehre A, Mamane H, Belenkova T, Markovich G, Adin A. Silver nanoparticle-E. coli colloidal interaction in water and effect on E. coli survival. J Colloid Interface Sci. 2009 Nov 15;339(2):521–6. Epub 2009 Jul 28. PubMed PMID: 19726047.  

    Google Scholar 

  40. Yin HQ, Langford R, Burrell RE. Comparative evaluation of the antimicrobial activity of ACTICOAT antimicrobial barrier dressing. J Burn Care Rehabil. 1999;20:195–200.

    Article  PubMed  CAS  Google Scholar 

  41. Tian J, Wong KKY, Ho CM, et al. Topical Delivery of Silver Nanoparticles Promotes Wound Healing. ChemMedChem. 2007;2:129–36.

    Article  PubMed  CAS  Google Scholar 

  42. Tredget EE, Shankowsky HA, Groeneveld A, et al. Randomized study evaluating the efficacy and safety of acticoat silver-coated dressing for the treatment of burn wounds. J Burn Care Rehabil. 1998;19(6):531–7.

    Article  PubMed  CAS  Google Scholar 

  43. Sibbald RG, Contreras-Ruiz J, Coutts P, et al. Bacteriology, inflammation, and healing: a study of nanocrystalline silver dressings in chronic venous leg ulcers. Adv Skin Wound Care. 2007;20:549–58.

    Article  PubMed  Google Scholar 

  44. Liu XL, Lee PY, Ho CM, et al. Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. Chem Med Chem. 2010;5:468–75.

    Article  PubMed  CAS  Google Scholar 

  45. Rosas-Hernández H, Jiménez-Badillo S, Martínez-Cuevas PP, et al. Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings. Toxicol Lett. 2009;191:305–13.

    Article  PubMed  Google Scholar 

  46. Kwan KH, Liu XL, To MK, et al. Modulation of collagen alignment by silver nanoparticles results in better mechanical properties in wound healing. Nanomedicine. 2011;7:497–504.

    Article  PubMed  CAS  Google Scholar 

  47. Hsieh PC, Davis ME, Gannon J, et al. Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J Clin Invest. 2006;116:237–48.

    Article  PubMed  CAS  Google Scholar 

  48. Tysseling-Mattiace VM, Sahni V, Niece KL, et al. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci. 2008;28:3814–23.

    Article  PubMed  CAS  Google Scholar 

  49. Hamada K, Hirose M, Yamashita T, et al. Spatial distribution of mineralized bone matrix produced by marrow mesenchymal stem cells in self-assembling peptide hydrogel scaffold. J Biomed Mater Res A. 2008;84:128–36.

    PubMed  Google Scholar 

  50. Schneider A, Garlick JA, Egles C. Self-assembling peptide nanofiber scaffolds accelerate wound healing. PLoS One. 2008;3:e1410.

    Article  PubMed  Google Scholar 

  51. Koutsopoulos S, Unsworth LD, Nagai Y, et al. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Proc Natl Acad Sci U S A. 2009;106:4623–8.

    Article  PubMed  CAS  Google Scholar 

  52. Zhang S. Beyond the Petri dish. Nat Biotechnol. 2004;22:151–2.

    Article  PubMed  CAS  Google Scholar 

  53. Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol. 2003;21:1171–8.

    Article  PubMed  CAS  Google Scholar 

  54. Zhang S. Designer self-assembling Peptide nanofiber scaffolds for study of 3-d cell biology and beyond. Adv Cancer Res. 2008;99:335–62.

    Article  PubMed  CAS  Google Scholar 

  55. Gelain F, Lomander A, Vescovi AL, et al. Systematic studies of a self-assembling peptide nanofiber scaffold with other scaffolds. J Nanosci Nanotechnol. 2007;7:424–34.

    Article  PubMed  CAS  Google Scholar 

  56. Kretsinger JK, Haines LA, Ozbas B, et al. Cytocompatibility of self-assembled beta-hairpin peptide hydrogel surfaces. Biomaterials. 2005;26:5177–86.

    Article  PubMed  CAS  Google Scholar 

  57. Pochan DJ, Schneider JP, Kretsinger J, et al. Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. J Am Chem Soc. 2003;125:11802–3.

    Article  PubMed  CAS  Google Scholar 

  58. Schneider JP, Pochan DJ, Ozbas B, et al. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J Am Chem Soc. 2002;124:15030–7.

    Article  PubMed  CAS  Google Scholar 

  59. Haines-Butterick L, Rajagopal K, Branco M, et al. Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc Natl Acad Sci U S A. 2007;104:7791–6.

    Article  PubMed  CAS  Google Scholar 

  60. Semino CE, Kasahara J, Hayashi Y, et al. Entrapment of migrating hippocampal neural cells in three-dimensional peptide nanofiber scaffold. Tissue Eng. 2004;10:643–55.

    Article  PubMed  CAS  Google Scholar 

  61. Wang S, Nagrath D, Chen PC, et al. Three-dimensional primary hepatocyte culture in synthetic self-assembling peptide hydrogel. Tissue Eng Part A. 2008;14:227–36.

    Article  PubMed  CAS  Google Scholar 

  62. Kisiday J, Jin M, Kurz B, et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A. 2002;99:9996–10001.

    Article  PubMed  CAS  Google Scholar 

  63. Genove E, Shen C, Zhang S, et al. The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function. Biomaterials. 2005;26:3341–51.

    Article  PubMed  CAS  Google Scholar 

  64. Narmoneva DA, Oni O, Sieminski AL, et al. Self-assembling short oligopeptides and the promotion of angiogenesis. Biomaterials. 2005;26:4837–46.

    Article  PubMed  CAS  Google Scholar 

  65. Sieminski AL, Was AS, Kim G, et al. The stiffness of three-dimensional ionic self-assembling peptide gels affects the extent of capillary-like network formation. Cell Biochem Biophys. 2007;49:73–83.

    Article  PubMed  CAS  Google Scholar 

  66. Semino CE, Merok JR, Crane GG, et al. Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaffolds. Differentiation. 2003;71:262–70.

    Article  PubMed  CAS  Google Scholar 

  67. Garreta E, Genove E, Borros S, et al. Osteogenic differentiation of mouse embryonic stem cells and mouse embryonic fibroblasts in a three-dimensional self-assembling peptide scaffold. Tissue Eng. 2006;12:2215–27.

    Article  PubMed  CAS  Google Scholar 

  68. Davis ME, Motion JP, Narmoneva DA, et al. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation. 2005;111:442–50.

    Article  PubMed  CAS  Google Scholar 

  69. Webber MJ, Tongers J, Renault MA, et al. Development of bioactive peptide amphiphiles for therapeutic cell delivery. Acta Biomater. 2010;6:3–11.

    Article  PubMed  CAS  Google Scholar 

  70. Webber MJ, Kessler JA, Stupp SI. Emerging peptide nanomedicine to regenerate tissues and organs. J Intern Med. 2010;267:71–88.

    Article  PubMed  CAS  Google Scholar 

  71. Huang Z, Sargeant TD, Hulvat JF, et al. Bioactive nanofibers instruct cells to proliferate and ­differentiate during enamel regeneration. J Bone Miner Res. 2008;23:1995–2006.

    Article  PubMed  CAS  Google Scholar 

  72. Galler KM, Cavender A, Yuwono V, et al. Self-assembling peptide amphiphile nanofibers as a scaffold for dental stem cells. Tissue Eng Part A. 2008;14:2051–8.

    Article  PubMed  CAS  Google Scholar 

  73. Capito RM, Azevedo HS, Velichko YS, et al. Self-assembly of large and small molecules into hierarchically ordered sacs and membranes. Science. 2008;319:1812–6.

    Article  PubMed  CAS  Google Scholar 

  74. Jayawarna V, Smith A, Gough JE, et al. Three-dimensional cell culture of chondrocytes on modified di-phenylalanine scaffolds. Biochem Soc Trans. 2007;35:535–7.

    Article  PubMed  CAS  Google Scholar 

  75. Yang Z, Gu H, Zhang Y, et al. Small molecule hydrogels based on a class of antiinflammatory agents. Chem Commun (Camb). 2004;21(2):208–9.

    Article  Google Scholar 

  76. Toledano S, Williams RJ, Jayawarna V, et al. Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. J Am Chem Soc. 2006;128:1070–1.

    Article  PubMed  CAS  Google Scholar 

  77. Thornton K, Smith AM, Merry CL, et al. Controlling stiffness in nanostructured hydrogels produced by enzymatic dephosphorylation. Biochem Soc Trans. 2009;37:660–4.

    Article  PubMed  CAS  Google Scholar 

  78. Smith AM, Williams RJ, Tang C, et al. Fmoc-Diphenylalanine self assembles to a hydrogel via a novel architecture based on π–π interlocked beta-sheets. Adv Mater. 2008;20:37–41.

    Article  CAS  Google Scholar 

  79. Davis ME, Hsieh PCH, Takahashi T, et al. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci U S A. 2006;103:8155–60.

    Article  PubMed  CAS  Google Scholar 

  80. Binyamin G, Shafi BM, Mery CM. Biomaterials: a primer for surgeons. Semin Pediatr Surg. 2006;15:276–83.

    Article  PubMed  Google Scholar 

  81. Schackelford JF. Introduction to materials science for engineers. 3rd ed. New York, NY: Macmillan Publishing Company; 1992.

    Google Scholar 

  82. Park JB, et al. In: Park JB, Bronzino JD, editors. Biomaterials: principles and applications. Danvers, MA: CRC Press; 2003.

    Google Scholar 

  83. Ngo YH, Li D, Simon GP, et al. Paper surfaces functionalized by nanoparticles. Adv Colloid Interface Sci. 2011;163:23–38.

    Article  PubMed  CAS  Google Scholar 

  84. Moreira-Teixeira LS, Georgi N, Leijten J, et al. Cartilage tissue engineering. Endocr Dev. 2011;21:102–15.

    Article  PubMed  CAS  Google Scholar 

  85. Bhat SV. Biomaterials second edition. Harrow, U.K.: Alpha Science International; 2005.

    Google Scholar 

  86. Matsumoto Y, Arai K, Momose H, et al. Development of a wound dressing composed of a hyaluronic acid sponge containing arginine. J Biomater Sci Polym Ed. 2009;20:993–1004.

    Article  PubMed  CAS  Google Scholar 

  87. Scherer SS, Pietramaggiori G, Mathews JC, et al. The mechanism of action of the vacuum-assisted closure device. PRSJ journal. 2008;122:786–97.

    CAS  Google Scholar 

  88. Heit YI, Dastouri P, Helm D, et al. Foam pore size is a critical interface parameter of suction-based wound healing devices. Plast Reconstr Surg. 2012;129(3):589–97.

    Article  PubMed  CAS  Google Scholar 

  89. Younan GJ, Heit YI, Dastouri P, et al. Mast cells are required in the proliferation and remodeling phases of microdeformational wound therapy. Plast Reconstr Surg. 2011;128:649e–58.

    Article  PubMed  Google Scholar 

  90. Edwards J. Hydrogels and their potential uses in burn wound management. Br J Nurs. 2010; 19:S12, S14-16

    Google Scholar 

  91. Anumolu SS, Menjoge AR, Deshmukh M, et al. Doxycycline hydrogels with reversible disulfide crosslinks for dermal wound healing of mustard injuries. Biomaterials. 2011;32:1204–17.

    Article  PubMed  CAS  Google Scholar 

  92. Seidlits SK, Drinnan CT, Petersen RR, et al. Fibronectin-hyaluronic acid composite hydrogels for three-dimensional endothelial cell culture. Acta Biomater. 2011;7:2401–9.

    Article  PubMed  CAS  Google Scholar 

  93. Jiang B, Larson JC, Drapala PW, et al. Investigation of lysine acrylate containing poly(N-isopropylacrylamide) hydrogels as wound dressings in normal and infected wounds. J Biomed Mater Res B Appl Biomater. 2012;100(3):668–76. doi:10.1002/jbm.b.31991.

    PubMed  Google Scholar 

  94. Hill PS, Apel PJ, Barnwell J, et al. Repair of peripheral nerve defects in rabbits using keratin hydrogel scaffolds. Tissue Eng Part A. 2011;17:1499–505.

    Article  PubMed  CAS  Google Scholar 

  95. Sun G, Zhang X, Shen YI, et al. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc Natl Acad Sci U S A. 2011;108:20976–81.

    Article  PubMed  CAS  Google Scholar 

  96. Anderson JM. Biological responses to materials. Annu Rev Mater Res. 2001;31:81–110.

    Article  CAS  Google Scholar 

  97. Langer R, Peppas NA. Advances in biomaterials, drug delivery and bionanotechnology. AIChE J. 2003;49:2990–3006.

    Article  CAS  Google Scholar 

  98. Ratner BD, Bryant SJ. Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng. 2004;6:41–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuelai Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liu, X., Wong, K.K.Y. (2013). Application of Nanomedicine in Wound Healing. In: Nasir, A., Friedman, A., Wang, S. (eds) Nanotechnology in Dermatology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5034-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5034-4_21

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5033-7

  • Online ISBN: 978-1-4614-5034-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics