Skip to main content

Conceptual Evolution in Cancer Biology

  • Reference work entry
  • First Online:
Molecular Genetic Pathology

Abstract

Stem cells are founder cells for every organ, tissue, and cell type in the body. Epigenetic processes govern cell differentiation by turning on or off tissue-specific genes; it also is an important mechanism of tumorigenesis. The major epigenetic process operates through DNA methylation at CpG sites converting cytosine to 5-methylcytosine. Another epigenetic process, gene imprinting, causes parental allele-specific expression of genes and is required in the development of an embryo. Loss of imprinting is associated with many types of tumors. DNA homeostasis depends on DNA repair. Impaired DNA mismatch repair mechanisms in the cell lead to accumulation of nonrepairable DNA alterations such as microsatellite instability, which is associated with both hereditary nonpolyposis colorectal cancer and sporadic colorectal cancers. Chromosome instability leads to changes of number and structure of chromosomes, including chromosomal losses, gains, and rearrangements. These are common features of malignant tumors. Gene expression is also regulated posttranscriptionally through microRNA or RNAi, which degrade the mRNA through binding to its complementary sequence. Telomeres protect the chromosome from gene loss by preventing ring chromosome formation and from gene gain by eliminating nonreciprocal translocation during cell division.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Further Reading

  • Ashley EA, Butte AJ, Wheeler MT, et al. Clinical assessment incorporating a personal genome. Lancet. 2010;375:1525–35.

    Article  PubMed  CAS  Google Scholar 

  • Ashworth A, Lord CJ, Reis-Filho JS. Genetic interactions in cancer progression and treatment. Cell. 2011;145:30–8.

    Article  PubMed  CAS  Google Scholar 

  • Baker M. RNA interference: from tools to therapies. Nature. 2011;464:1225.

    Article  Google Scholar 

  • Bartel DP. MicroRNAs: genetics, biogenetics, mechanism, and function. Cell. 2004;116:281–97.

    Article  PubMed  CAS  Google Scholar 

  • Bautch VL. Cancer: tumour stem cells switch sides. Nature. 2010;468:770–1.

    Article  PubMed  CAS  Google Scholar 

  • Baylin SB, Jones PA. A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer. 2011;11:726–34.

    Article  PubMed  CAS  Google Scholar 

  • Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 2011;17:320–9.

    Article  PubMed  CAS  Google Scholar 

  • Brower V. Epigenetics: unravelling the cancer code. Nature. 2011;471:S12–3.

    Article  PubMed  CAS  Google Scholar 

  • Cernilogar FM, Onorati MC, Kothe GO, et al. Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature. 2011;480:391–5.

    Article  PubMed  CAS  Google Scholar 

  • Cheng L, Sung MT, Cossu-Rocca P, et al. OCT4: biological functions and clinical applications as a marker of germ cell neoplasia. J Pathol. 2007;211:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Cheng L, Williamson SR, Zhang S, et al. Understanding the molecular genetics of renal cell neoplasia: implications for diagnosis, prognosis and therapy. Expert Rev Anticancer Ther. 2010a;10:843–64.

    Article  PubMed  CAS  Google Scholar 

  • Cheng L, Davidson DD, MacLennan GT, et al. The origins of urothelial carcinoma. Expert Rev Anticancer Ther. 2010b;10:865–80.

    Article  PubMed  CAS  Google Scholar 

  • Cheng L, Alexander RE, Zhang S, et al. The clinical and therapeutic implications of cancer stem cell biology. Expert Rev Anticancer Ther. 2011a;11:1133–45.

    Article  Google Scholar 

  • Cheng L, Zhang S, MacLennan GT, et al. Bladder cancer: translating molecular genetic insights into clinical practice. Hum Pathol. 2011b;42:455–81.

    Article  PubMed  CAS  Google Scholar 

  • Cheng L, Zhang S, Alexander R, et al. Sarcomatoid carcinoma of the urinary bladder: the final common pathway of urothelial carcinoma dedifferentiation. Am J Surg Pathol. 2011c;35:e34–46.

    Article  PubMed  Google Scholar 

  • Cheng L, Alexander RE, MacLennan GT, et al. Molecular pathology of lung cancer: key to personalized medicine. Mod Pathol. 2012;25:347–69.

    Article  PubMed  CAS  Google Scholar 

  • Chin L, Andersen JN, Futreal PA. Cancer genomics: from discovery science to personalized medicine. Nat Med. 2011a;17:297–303.

    Article  PubMed  CAS  Google Scholar 

  • Chin L, Hahn WC, Getz G, Meyerson M. Making sense of cancer genomic data. Genes Dev. 2011b;25:534–55.

    Article  PubMed  CAS  Google Scholar 

  • Chitwood DH, Timmermans MC. Small RNAs are on the move. Nature. 2011;467:415–9.

    Article  Google Scholar 

  • Clark MF, Fuller M. Stem cells and cancer: two faces of Eve. Cell. 2006;124:1111–5.

    Article  Google Scholar 

  • de Lange T. How telomeres solve the end-protection problem. Science. 2009;326:948–52.

    Article  PubMed  Google Scholar 

  • Delude C. Tumorigenesis: testing ground for cancer stem cells. Nature. 2011;480:S43–5.

    Article  PubMed  CAS  Google Scholar 

  • Frohling S, Dohner H. Chromosomal abnormalities in cancer. N Engl J Med. 2008;359:722–34.

    Article  PubMed  CAS  Google Scholar 

  • Goffin J, Eisenhauer E. DNA methyltransferase inhibitors-state of the art. Ann Oncol. 2002;13:1699–716.

    Article  PubMed  CAS  Google Scholar 

  • Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481:306–13.

    Article  PubMed  CAS  Google Scholar 

  • Green ED, Guyer MS. National human genome research I. Charting a course for genomic medicine from base pairs to bedside. Nature. 2011;470:204–13.

    Article  PubMed  CAS  Google Scholar 

  • Haber DA, Gray NS, Baselga J. The evolving war on cancer. Cell. 2011;145:19–24.

    Article  PubMed  CAS  Google Scholar 

  • Hamburg MA, Collins FS. The path to personalized medicine. N Engl J Med. 2010;363:301–4.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton A, Baulcombe D. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science. 2006;286:950–2.

    Article  Google Scholar 

  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  PubMed  CAS  Google Scholar 

  • Hannon G. RNA interference. Nature. 2002;418:244–51.

    Article  PubMed  CAS  Google Scholar 

  • Harris TJ, McCormick F. The molecular pathology of cancer. Nat Rev Clin Oncol. 2010;7:251–65.

    Article  PubMed  CAS  Google Scholar 

  • Herman J, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349:2042–54.

    Article  PubMed  CAS  Google Scholar 

  • Ionov Y, Peinado MA, Malkhosyan S, et al. Ubiquitous somatic mutations in simple repeated sequences reveals a new mechanism for colonic carcinogenesis. Nature. 1993;363:558–61.

    Article  PubMed  CAS  Google Scholar 

  • Joeng KS, Song EJ, Lee KJ. Long lifespan in worms with long telomeric DNA. Nature. 2004;36:607–11.

    CAS  Google Scholar 

  • Jones PA, Gonzalgo ML. Altered DNA methylation and genome instability: a new pathway to cancer? Proc Natl Acad Sci USA. 1997;94:2103–5.

    Article  PubMed  CAS  Google Scholar 

  • Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med. 2006;355:1253–61.

    Article  PubMed  CAS  Google Scholar 

  • Keverne EB. Neuroscience: a mine of imprinted genes. Nature. 2011;466:823–4.

    Article  Google Scholar 

  • Kong A, Steinthorsdottir V, Masson G, et al. Parental origin of sequence variants associated with complex diseases. Nature. 2009;462:868–74.

    Article  PubMed  CAS  Google Scholar 

  • Kouzminova N, Lu T, Lin AY. Molecular basis of colorectal cancer. N Engl J Med. 2011;362:1245–6.

    Google Scholar 

  • Lander ES. Initial impact of the sequencing of the human genome. Nature. 2011;470:187–97.

    Article  PubMed  CAS  Google Scholar 

  • Ledford H. Gene reading steps up a gear. Nature. 2011;470:155.

    Article  PubMed  CAS  Google Scholar 

  • Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancer. Nature. 1998;396:634–9.

    Article  Google Scholar 

  • Leslie M. Cell biology. Are telomere tests ready for prime time? Science. 2011;332:414–5.

    Article  PubMed  CAS  Google Scholar 

  • Loeb LA. Human cancers express mutator phenotypes: origin, consequences and targeting. Nat Rev Cancer. 2011;11:450–7.

    Article  PubMed  CAS  Google Scholar 

  • Lowden MR, Flibotte S, Moerman DG. DNA synthesis generates terminal duplications that seal end-to-end chromosome fusions. Science. 2011;332:468–71.

    Article  PubMed  CAS  Google Scholar 

  • Macconaill LE, Garraway LA. Clinical implications of the cancer genome. J Clin Oncol. 2010;28:5219–28.

    Article  PubMed  Google Scholar 

  • Manolio TA, Green ED. Genomics reaches the clinic: from basic discoveries to clinical impact. Cell. 2011;147:14–6.

    Article  PubMed  CAS  Google Scholar 

  • McDermott U, Downing JR, Stratton MR. Genomics and the continuum of cancer care. N Engl J Med. 2011;364:340–50.

    Article  PubMed  CAS  Google Scholar 

  • Medema JP, Vermeulen L. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature. 2011;474:318–26.

    Article  PubMed  CAS  Google Scholar 

  • Meyerson M, Gabriel S, Getz G. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet. 2010;11:685–96.

    Article  PubMed  CAS  Google Scholar 

  • Pearson H. Epidemiology: study of a lifetime. Nature. 2011;471:20–4.

    Article  PubMed  Google Scholar 

  • Polyak K, Hahn W. Roots and stem: stem cells in cancer. Nat Med. 2006;12:296–300.

    Article  PubMed  CAS  Google Scholar 

  • Potti A, Schilsky RL, Nevins JR. Refocusing the war on cancer: the critical role of personalized treatment. Sci Transl Med. 2010;2:28cm13.

    Google Scholar 

  • Redon R, Ishikawa S, Fitch KR, et al. Global variation in copy number in the human genome. Nature. 2006;444:444–54.

    Article  PubMed  CAS  Google Scholar 

  • Rini BI, Atkins MB. Resistance to targeted therapy in renal-cell carcinoma. Lancet Oncol. 2009;10:992–1000.

    Article  PubMed  CAS  Google Scholar 

  • Roychowdhury S, Iyer MK, Robinson DR, et al. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med. 2011;3:111ra21.

    Google Scholar 

  • Shackleton M, Quintana E, Fearon ER, et al. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell. 2009;138:822–9.

    Article  PubMed  CAS  Google Scholar 

  • Stratton MR. Exploring the genomes of cancer cells: progress and promise. Science. 2011;331:1553–8.

    Article  PubMed  CAS  Google Scholar 

  • Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458:719–24.

    Article  PubMed  CAS  Google Scholar 

  • Velculescu VE, Diaz LA, Jr. Understanding the enemy. Sci Transl Med. 2011;3:98ps37.

    Google Scholar 

  • Visvader JE. Cells of origin in cancer. Nature. 2011;469:314–22.

    Article  PubMed  CAS  Google Scholar 

  • Weinstein IB, Joe A. Oncogene addiction. Cancer Res. 2008;68:3077–80; discussion 80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Zhang, S., Davidson, D.D., Montironi, R., Lopez-Beltran, A., MacLennan, G.T., Cheng, L. (2013). Conceptual Evolution in Cancer Biology. In: Cheng, L., Zhang, D., Eble, J. (eds) Molecular Genetic Pathology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4800-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4800-6_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4799-3

  • Online ISBN: 978-1-4614-4800-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics