Skip to main content

Integrating Pathogenic Models of Autism: Pathway and Network Analysis

  • Reference work entry
Comprehensive Guide to Autism

Abstract

Many cases of autism spectrum disorder (ASD) are caused by rare, highly penetrant mutations. The terms “secondary autism” and “syndromic autism” refer to those with an ASD diagnosis associated with a defined genetic defect. Well-known examples of syndromic ASD include neurofibromatosis type 1, fragile X syndrome, and tuberous sclerosis (TS). As with all forms of ASD, the neurological phenotype of patients with syndromic ASD is highly variable and is frequently accompanied by mental retardation, attention-deficit hyperactivity disorder, and/or seizures, conditions frequently found in individuals with idiopathic ASD. Despite the genetic heterogeneity underpinning ASD, this chapter explains how pathway- and network-based methods can (i) integrate the current ASD pathological hypotheses, such as abnormal synaptic, secretory pathway, calcium signalling, or mitochondrial function, and (ii) be used to explain the high incidence of ASD in individuals with defined genetic disorders, such as TS. Data from these analyses also suggest that a single therapeutic drug may be able to target ASD in a broad subset of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez VA, Sabatini BL. Anatomical and physiological plasticity of dendritic spines. Annu Rev Neurosci. 2007;30:79–97.

    PubMed  Google Scholar 

  • Angelidou A, Francis K, Vasiadi M, et al. Neurotensin is increased in serum of children with autistic disorder. J Neuroinflammation. 2010;7:48.

    PubMed  Google Scholar 

  • Antonarakis SE, Beckmann JS. Mendelian disorders deserve more attention. Nat Rev Genet. 2006;7:277–82.

    PubMed  Google Scholar 

  • Ashwood P, Corbett BA, Kantor A, et al. In search of cellular immunophenotypes in the blood of children with autism. PLoS One. 2011;6:e19299.

    PubMed  Google Scholar 

  • Auerbach BD, Bear MF. Loss of FXMRP decouples metabotropic glutamate receptor dependent priming of long-term potentiation from protein synthesis. J Neurophysiol. 2010;104:1047–51.

    PubMed  Google Scholar 

  • Auerbach BD, Osterweil EK, Bear MF. Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature. 2011;480:63–86.

    PubMed  Google Scholar 

  • Austin CD, Shields D. Prosomatostatin processing in permeabilized cells. Calcium is required for prohormone cleavage but not formation of nascent secretory vesicles. J Biol Chem. 1996;271:1194–9.

    PubMed  Google Scholar 

  • Aziz A, Harrop SP, Bishop N. DIA1R is an X-linked gene related to DIA1. PLoS One. 2011a;6:e14534.

    PubMed  Google Scholar 

  • Aziz A, Harrop SP, Bishop N. Characterization of the DIA1 protein family. PLoS One. 2011b;6:e14547.

    PubMed  Google Scholar 

  • Aziz A, Karmi T, Bishop N. Autism and the DIA1-family: role of the cellular secretory pathway. In: Patel VB, Preedy VR, Martin C, editors. Comprehensive guide to autism. New York: Springer; 2014.

    Google Scholar 

  • Baatar D, Patel K, Taub DD. The effects of ghrelin on inflammation and the immune system. Mol Cell Endocrinol. 2011;340:44–58.

    PubMed  Google Scholar 

  • Barth C, Bishop N. Autism: comparative genomics and interactomics. In: Patel VB, Preedy VR, Martin C, editors. Comprehensive guide to autism. New York: Springer; 2014.

    Google Scholar 

  • Ben Achour S, Pascual O. Glia: the many ways to modulate synaptic plasticity. Neurochem Int. 2010;57:440–5.

    PubMed  Google Scholar 

  • Benach JL, Li E, McGovern MM. A microbial association with autism. MBio. 2012;3:e00019–12.

    PubMed  Google Scholar 

  • Benvenuto A, Moavero R, Alessandrelli R, et al. Syndromic autism. World J Pediatr. 2009;5:169–76.

    PubMed  Google Scholar 

  • Betancur C. Etiological heterogeneity in autism spectrum disorders. Brain Res. 2011;1380:42–77.

    PubMed  Google Scholar 

  • Bill BR, Geschwind DH. Genetic advances in autism. Curr Opin Genet Dev. 2009;19:271–8.

    PubMed  Google Scholar 

  • Bishop N, Aziz A, Barth C. Understanding phenotypic variation in autism spectrum disorder: insights from syndromic forms of autism. In: Patel VB, Preedy VR, Martin C, editors. Comprehensive guide to autism. New York: Springer; 2014.

    Google Scholar 

  • Boletta A. Emerging evidence of a link between the polycystins and the mTOR pathways. Pathogenetics. 2009;2:6.

    PubMed  Google Scholar 

  • Bolton PF. Medical conditions in autism spectrum disorders. J Neurodev Disord. 2009;1:102–13.

    PubMed  Google Scholar 

  • Bourgeron T. A synaptic trek to autism. Curr Opin Neurobiol. 2009;19:231–4.

    PubMed  Google Scholar 

  • Brose N, O’Connor V, Skehel P. Synaptopathy: dysfunction of synaptic function? Biochem Soc Trans. 2010;38:443–4.

    PubMed  Google Scholar 

  • Brown AC, Mehl-Madrona L. Autoimmune and gastrointestinal dysfunctions: does a subset of children with autism reveal a broader connection? Expert Rev Gastroenterol Hepatol. 2011;5:465–77.

    PubMed  Google Scholar 

  • Buerger C, DeVries B, Stambolic V. Localization of Rheb to the endomembrane is critical for its signaling function. Biochem Biophys Res Commun. 2006;344:869–80.

    PubMed  Google Scholar 

  • Buie T, Fuchs GJ 3rd, Furata GT, et al. Recommendations for evaluation and treatment of common gastrointestinal problems in children with ASDS. Pediatrics. 2010;125(Suppl 1):S19–S29.

    PubMed  Google Scholar 

  • Byrnes KR, Loane DJ, Faden AI. Metabotropic glutamate receptors as targets for multipotential treatment of neurological disorders. Neurotherapeutics. 2009;6:94–107.

    PubMed  Google Scholar 

  • Caglayan AO. Genetic causes of syndromic and non-syndromic autism. Dev Med Child Neurol. 2010;52:130–8.

    PubMed  Google Scholar 

  • Cardozo AK, Ortis F, Storling J, et al. Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete ER Ca2+, leading to induction of ER stress. Diabetes. 2005;54:452–61.

    PubMed  Google Scholar 

  • Castagnola M, Messana I, Inzitari R, et al. Hypo-phosphorylation of salivary peptidome as a clue to the molecular pathogenesis of autism. J Proteome Res. 2008;7:5327–32.

    PubMed  Google Scholar 

  • Castellani ML, Conti CM, Kempuraj DJ, et al. Autism and immunity. Int J Immunopathol Pharmacol. 2009;22:15–9.

    PubMed  Google Scholar 

  • Chévere-Torres I, Kaphzan H, Bhattacharya A, et al. Metabotropic glutamate receptor-dependent long-term depression is impaired due to elevated ERK signaling in the ΔRG mouse model of tuberous sclerosis. Neurobiol Dis. 2012;45:1101–10.

    PubMed  Google Scholar 

  • Chung TK, Lynch ER, Fiser CJ, et al. Psychiatric comorbidity and treatment response in patients with tuberous sclerosis. Ann Clin Psychiatry. 2011;23:263–9.

    PubMed  Google Scholar 

  • D’Souza AD, Parikh N, Kaech SM, Shadel GS. Convergence of multiple signaling pathways is required to coordinately up-regulate mtDNA and mitochondrial biogenesis during T cell activation. Mitochondrion. 2007;7:3743–85.

    Google Scholar 

  • de Brito OM, Scorrano L. Mitofusin-2 regulates mitochondrial and ER morphology and tethering. Mitochondrion. 2009;9:222–6.

    PubMed  Google Scholar 

  • de Brito OM, Scorrano L. Spatial organization of the ER-mitochondria relationship. EMBO J. 2010;29:2715–23.

    PubMed  Google Scholar 

  • Dölen G, Bear MF. Fragile x syndrome and autism: from disease model to therapeutic targets. J Neurodev Disord. 2009;1:133–40.

    PubMed  Google Scholar 

  • Drenan RM, Liu X, Bertram PG, et al. FKBP12-rapamycin-associated protein or mTOR localization in the ER and Golgi apparatus. J Biol Chem. 2004;279:772–8.

    PubMed  Google Scholar 

  • Dudanova I, Sedej S, Ahmad M, et al. Important contribution of alpha-neurexins to Ca2+ triggered exocytosis of secretory granules. J Neurosci. 2006;26:10599–613.

    PubMed  Google Scholar 

  • Dunlop EA, Tee AR. Mammalian target of rapamycin complex 1. Cell Signal. 2009;21:827–35.

    PubMed  Google Scholar 

  • Ehninger D. From genes to cognition in tuberous sclerosis. Neuropharmacology. 2013;68:97–105.

    PubMed  Google Scholar 

  • Ehninger D, Silva AJ. Rapamycin for treating tuberous sclerosis and ASDs. Trends Mol Med. 2011;17:78–87.

    PubMed  Google Scholar 

  • Ehninger D, Li W, Fox K, et al. Reversing neurodevelopmental disorders in adults. Neuron. 2008;60:950–60.

    PubMed  Google Scholar 

  • Frégeau MO, Régimbald-Dumas Y, Guillemette G. Positive regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by mTOR. J Cell Biochem. 2011;112:723–33.

    PubMed  Google Scholar 

  • Gargus JJ. Genetic calcium signaling abnormalities in the central nervous system: seizures, migraine, and autism. Ann NY Acad Sci. 2009;1151:133–56.

    PubMed  Google Scholar 

  • Gaut JR. Threonine phosphorylation of BiP maps to its protein binding domain. Cell Stress Chaperones. 1997;2:252–62.

    PubMed  Google Scholar 

  • Ghanizadeh A. Targeting neurotensin as a potential novel approach for the treatment of autism. J Neuroinflammation. 2010;7:58.

    PubMed  Google Scholar 

  • Gipson TT, Johnston MV. Plasticity and mTOR. Neural Plast. 2012;2012:486402.

    PubMed  Google Scholar 

  • Gomes LC, Di Benedetto G, Scorrano L. Essential amino acids and glutamine regulate induction of mitochondrial elongation during autophagy. Cell Cycle. 2011;10:2635–9.

    PubMed  Google Scholar 

  • Haidinger M, Hecking M, Weichhart T, et al. Sirolimus in renal transplant recipients with tuberous sclerosis complex. Transpl Int. 2010;23:777–85.

    PubMed  Google Scholar 

  • Hampson DR, Gholizadeh S, Pacey LK. Pathways to drug development for ASDs. Clin Pharmacol Ther. 2012;91:189–200.

    PubMed  Google Scholar 

  • Hizawa K, Iida M, Matsumoto T, et al. Gastrointestinal involvement in tuberous sclerosis. J Clin Gastroenterol. 1994;19:46–9.

    PubMed  Google Scholar 

  • Jan YN, Jan LY. Branching out: mechanisms of dendritic arborization. Nat Rev Neurosci. 2010;11:316–28.

    PubMed  Google Scholar 

  • Jaworek J, Nawrot-Porabka K, Leja-Szpak A, et al. Brain-gut axis in the modulation of pancreatic enzyme secretion. J Physiol Pharmacol. 2010;61:523–31.

    PubMed  Google Scholar 

  • Johnson JD, Klausen C, Habibi HR, Chang JP. Function-specific calcium stores selectively regulate growth hormone secretion, storage, and mRNA level. Am J Physiol Endocrinol Metab. 2002;282:E810–19.

    PubMed  Google Scholar 

  • Jones KA, Jiang X, Yamamoto Y, Yeung RS. Tuberin is a component of lipid rafts: role in post-Golgi transport. Exp Cell Res. 2004;295:512–24.

    PubMed  Google Scholar 

  • Jozwiak J, Jozwiak S, Skopinski P. Immunohistochemical and microscopic studies on giant cells in tuberous sclerosis. Histol Histopathol. 2005;20:1321–6.

    PubMed  Google Scholar 

  • Jülich K, Sahin M. Autism spectrum disorders in tuberous sclerosis. In: Patel VB, Preedy VR, Martin C, editors. Comprehensive guide to autism. New York: Springer; 2014.

    Google Scholar 

  • Kalafatakis K, Triantafyllou K. Contribution of neurotensin in the immune and neuroendocrine modulation of enteric function. Regul Pept. 2011;170:7–17.

    PubMed  Google Scholar 

  • Kalnina Z, Silina K, Bruvere R, et al. Molecular characterisation and expression analysis of SEREX-defined antigen NUCB2 in gastric epithelium, gastritis and gastric cancer. Eur J Histochem. 2009;53:7–18.

    PubMed  Google Scholar 

  • Kennedy MJ, Ehlers MD. Organelles and trafficking machinery for postsynaptic plasticity. Annu Rev Neurosci. 2006;29:325–62.

    PubMed  Google Scholar 

  • Kim IJ, Beck HN, Lein PJ, Higgins D. Interferon gamma induces retrograde dendritic retraction and inhibits synapse formation. J Neurosci. 2002;22:4530–9.

    PubMed  Google Scholar 

  • Krey JF, Dolmetsch RE. Molecular mechanisms of autism: a possible role for Ca2+ signaling. Curr Opin Neurobiol. 2007;17:112–19.

    PubMed  Google Scholar 

  • Kumar V, Fahey PG, Jong YJ, et al. Activation of intracellular metabotropic glutamate receptor 5 in striatal neurons leads to up-regulation of genes associated with sustained synaptic transmission. J Biol Chem. 2012;287:5412–25.

    PubMed  Google Scholar 

  • Kuwajima M, Dehoff MH, Furuichi T, et al. Localization and expression of group I metabotropic glutamate receptors in the mouse. J Neurosci. 2007;27:6249–62460.

    PubMed  Google Scholar 

  • Leung AK, Robson WL. Tuberous sclerosis complex. J Pediatr Health Care. 2007;21:108–14.

    PubMed  Google Scholar 

  • Li J, Liu J, Song J, et al. mTORC1 inhibition increases neurotensin secretion and expression. Am J Physiol Cell Physiol. 2011;301:C213–26.

    PubMed  Google Scholar 

  • Lichtenstein P, Carlström E, Råstam M, et al. The genetics of autism spectrum disorders and related disorders in childhood. Am J Psychiatry. 2010;167:1357–63.

    PubMed  Google Scholar 

  • Lin P, Yao Y, Hofmeister R, et al. Overexpression of Calnuc increases agonist and thapsigargin releasable Ca2+ storage in the Golgi. J Cell Biol. 1999;145:279–89.

    PubMed  Google Scholar 

  • Lin W, Bailey SL, Ho H, et al. The integrated stress response prevents demyelination. J Clin Invest. 2007;117:448–56.

    PubMed  Google Scholar 

  • Lin P, Fischer T, Lavoie C, et al. Calnuc plays a role in dynamic distribution of Galphai and modulates ACTH secretion. Mol Neurodegener. 2009;4:15.

    PubMed  Google Scholar 

  • Liu X, Zheng XF. Endoplasmic reticulum and Golgi localization sequences for mTOR. Mol Biol Cell. 2007;18:1073–82.

    PubMed  Google Scholar 

  • Lodish MB, Stratakis CA. Endocrine tumours in neurofibromatosis type 1, tuberous sclerosis and related syndromes. Best Pract Res Clin Endocrinol Metab. 2010;24:439–49.

    PubMed  Google Scholar 

  • Matsuda T, Nagano T, Takemura M, Baba A. Topics on the Na+/Ca2+ exchanger. J Pharmacol Sci. 2006;102:22–6.

    PubMed  Google Scholar 

  • Mattson MP. Mitochondrial regulation of neuronal plasticity. Neurochem Res. 2007;32:707–15.

    PubMed  Google Scholar 

  • Mattson MP, Gleichmann M, Cheng A. Mitochondria in neuroplasticity and neurological disorders. Neuron. 2008;60:748–66.

    PubMed  Google Scholar 

  • McDougle CJ, Erickson CA, Stigler KA, et al. Neurochemistry in the pathophysiology of autism. J Clin Psychiatry. 2005;66 Suppl 10:9–18.

    Google Scholar 

  • Miles JH. Autism spectrum disorders – a genetics review. Genet Med. 2011;13:278–94.

    PubMed  Google Scholar 

  • Moulis H, Garsten JJ, Marano AR, Elser JM. Tuberous sclerosis complex: review of the gastrointestinal manifestations. Am J Gastroenterol. 1992;87:914–18.

    PubMed  Google Scholar 

  • O’Brien TF, Gorentla BK, Xie D, et al. Regulation of T-cell survival and mitochondrial homeostasis by TSC1. Eur J Immunol. 2011;41:3361–70.

    PubMed  Google Scholar 

  • Palmieri L, Persico AM. Mitochondrial dysfunction in autism: cause or effect? Biochim Biophys Acta. 2010;1797:1130–7.

    PubMed  Google Scholar 

  • Pardo CA, Vargas DL, Zimmerman AW. Immunity, neuroglia and neuroinflammation in autism. Int Rev Psychiatry. 2005;17:485–95.

    PubMed  Google Scholar 

  • Peça J, Feng G. Cellular and synaptic network defects in autism. Curr Opin Neurobiol. 2012;22:866–72.

    PubMed  Google Scholar 

  • Penzes P, Cahill ME, Jones KA, et al. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci. 2011;14:285–93.

    PubMed  Google Scholar 

  • Portelli J, Michotte Y, Smolders I. Ghrelin: an emerging new anticonvulsant neuropeptide. Epilepsia. 2012;53:585–95.

    PubMed  Google Scholar 

  • Ronald A, Hoekstra RA. Autism spectrum disorders and autistic traits: a decade of new twin studies. Am J Med Genet B Neuropsychiatr Genet. 2011;156B:255–74.

    PubMed  Google Scholar 

  • Sahin M. Targeted treatment trials for tuberous sclerosis and autism: no longer a dream. Curr Opin Neurobiol. 2012;22:895–901.

    PubMed  Google Scholar 

  • Sarnat HB, Flores-Sarnat L, Hader W, et al. Mitochondrial ‘hypermetabolic’ neurons in paediatric epileptic foci. Can J Neurol Sci. 2011;38:909–17.

    PubMed  Google Scholar 

  • Scheenen WJ, Wollheim CB, Pozzan T, Fasolato C. Ca2+ depletion from granules inhibits exocytosis. J Biol Chem. 1998;273:19002–8.

    PubMed  Google Scholar 

  • Sebastián D, Hernández-Alvarez MI, Segalés J, et al. Mitofusin 2 links mitochondrial and ER function with insulin signaling. Proc Natl Acad Sci USA. 2012;109:5523–8.

    PubMed  Google Scholar 

  • Shaw RJ, Bardeesy N, Manning BD, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. 2004;6:91–9.

    PubMed  Google Scholar 

  • Silva AJ, Ehninger D. Adult reversal of cognitive phenotypes in neurodevelopmental disorders. J Neurodev Disord. 2009;1:150–7.

    PubMed  Google Scholar 

  • Smalley SL. Autism and tuberous sclerosis. J Autism Dev Disord. 1998;28:407–14.

    PubMed  Google Scholar 

  • Suzuki K, Matsuzaki H, Iwata K, et al. Plasma cytokine profiles in subjects with high-functioning ASDs. PLoS One. 2011;6:e20470.

    PubMed  Google Scholar 

  • Swiech L, Perycz M, Malik A, Jaworski J. Role of mTOR in physiology and pathology of the nervous system. Biochim Biophys Acta. 2008;1784:116–32.

    PubMed  Google Scholar 

  • Talkowski ME, Rosenfeld JA, Blumenthal I, et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell. 2012;149:525–37.

    PubMed  Google Scholar 

  • Tamás P, Hawley SA, Clarke RG, et al. Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J Exp Med. 2006;203:1665–16670.

    PubMed  Google Scholar 

  • Troca-Marín JA, Alves-Sampaio A, Montesinos ML. Deregulated mTOR-mediated translation in intellectual disability. Prog Neurobiol. 2012;96(2):268–82.

    PubMed  Google Scholar 

  • Tsukumo Y, Tomida A, Kitahara O, et al. Nucleobindin 1 controls the unfolded protein response by inhibiting ATF6 activation. J Biol Chem. 2007;282:29264–72.

    PubMed  Google Scholar 

  • Tu JC, Xiao B, Naisbitt S, et al. Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron. 1999;23:583–92.

    PubMed  Google Scholar 

  • Tyburczy ME, Kaminska B. Subependymal giant cell astrocytoma: gene expression profiling. In: Hayat MA, editor. Tumours of the central nervous system, vol. 5. Dordrecht: Springer; 2012.

    Google Scholar 

  • Valenzuela JI, Jaureguiberry-Bravo M, Couve A. Neuronal protein trafficking: emerging consequences of ER dynamics. Mol Cell Neurosci. 2011;48:269–77.

    PubMed  Google Scholar 

  • Vargas DL, Nascimbene C, Krishnan C, et al. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005;57:67–81.

    PubMed  Google Scholar 

  • Verkhratsky A. Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev. 2005;85:201–79.

    PubMed  Google Scholar 

  • Weichhart T, Säemann MD. The PI3K/Akt/mTOR pathway in innate immune cells: emerging therapeutic applications. Ann Rheum Dis. 2008;67:iii70–4.

    PubMed  Google Scholar 

  • Weichhart T, Costantino G, Poglitsch M, et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity. 2008;29:565–77.

    PubMed  Google Scholar 

  • Wienecke R, Maize JC, Shoarinejad F, et al. Co-localization of the TSC2 product tuberin with its target Rap1 in the Golgi. Oncogene. 1996;13:913–23.

    PubMed  Google Scholar 

  • Williams JA. Regulation of acinar cell function in the pancreas. Curr Opin Gastroenterol. 2010;26:478–83.

    PubMed  Google Scholar 

  • Wu X, Kihara T, Akaike A, et al. PI3K/Akt/mTOR signaling regulates glutamate transporter 1 in astrocytes. Biochem Biophys Res Commun. 2010;393:514–851.

    PubMed  Google Scholar 

  • Xiao B, Tu JC, Worley PF. Homer: a link between neural activity and glutamate receptor function. Curr Opin Neurobiol. 2000;10:370–4.

    PubMed  Google Scholar 

  • Xu G, Li Y, An W, et al. Gastric mammalian target of rapamycin signaling regulates ghrelin production and food intake. Endocrinology. 2009;150:3637–44.

    PubMed  Google Scholar 

  • Xu G, Li Y, An W, et al. Regulation of gastric hormones by systemic rapamycin. Peptides. 2010;31:2185–92.

    PubMed  Google Scholar 

  • Yamamoto Y, Jones KA, Mak BC, et al. Multicompartmental distribution of the tuberous sclerosis gene products. Arch Biochem Biophys. 2002;404:210–17.

    PubMed  Google Scholar 

  • Yanagihara N, Oishi Y, Yamamoto H, et al. Phosphorylation of chromogranin A and catecholamine secretion stimulated by elevation of intracellular Ca2+. J Biol Chem. 1996;271:17463–8.

    PubMed  Google Scholar 

  • Yoo SH. Secretory granules in inositol 1,4,5-trisphosphate-dependent Ca2+ signaling in the cytoplasm of neuroendocrine cells. FASEB J. 2010;24:653–64.

    PubMed  Google Scholar 

  • Yoo SH. Role of secretory granules in inositol 1,4,5-trisphosphate-dependent Ca(2+) signaling. Cell. Cell Calcium. 2011;50:175–83.

    PubMed  Google Scholar 

  • Yoo SH, Hur YS. Enrichment of the inositol 1,4,5-trisphosphate receptor/Ca2+ channels in secretory granules and essential roles of chromogranins. Cell Calcium. 2012;51:342–50.

    PubMed  Google Scholar 

  • Yoshii A, Murata Y, Kim J, et al. TrkB and protein kinase Mζ regulate synaptic localization of PSD-95 in developing cortex. J Neurosci. 2011;31:11894–904.

    PubMed  Google Scholar 

  • Zhou J, Parada LF. PTEN signaling in autism spectrum disorders. Curr Opin Neurobiol. 2012;22:873–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi Bishop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Barth, C., Aziz, A., Bishop, N. (2014). Integrating Pathogenic Models of Autism: Pathway and Network Analysis. In: Patel, V., Preedy, V., Martin, C. (eds) Comprehensive Guide to Autism. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4788-7_193

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4788-7_193

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4787-0

  • Online ISBN: 978-1-4614-4788-7

  • eBook Packages: Behavioral Science

Publish with us

Policies and ethics