Skip to main content

Minor Proteins, Including Growth Factors

  • Chapter
  • First Online:
Advanced Dairy Chemistry

Abstract

Minor milk proteins and growth factors assist in furthering the maternal influence on development. The angiogenins, angiotensin-converting enzyme inhibitors, heparin affin regulatory peptide and kininogen all serve multiple roles within neural and cellular development while promoting tissue vascularity. Some proteins also direct immune function together with β2-microglobulin, osteopontin, proteose peptone 3 and TGFβ1 and 2 among others. The IGFs and their binding proteins as well as the key mitogens EGF and TGFα and various metabolic regulatory molecules and vitamin-binding proteins are key functional entities in milk. It is clear that the spectrum of minor proteins in milk is no less complex than that found in the maternal or neonatal circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adamski, F.M., King, A.T. and Demmer, J. (2000). Expression of the Fc receptor in the mammary gland during lactation in the marsupial Trichosurus vulpecula (brushtail possum). Mol. Immunol. 37, 435–444.

    Google Scholar 

  • Adiaga, P.R., Subramania, N.S., Rao, J. and Kumar, M. (1997). Prospects of riboflavin carrier protein (RCP) as an antifertility vaccine in male and female mammals. Hum. Reprod. Update. 3, 325–334.

    Google Scholar 

  • Adiga, P.R. (1994). Riboflavin carrier protein in reproduction, in, Vitamin Receptors: Vitamins as Ligands in Cell Communication, K. Dakshinamurti, ed., Cambridge University Press, Cambridge, UK. pp. 137–176.

    Google Scholar 

  • Alain, K., Karrow, N.A., Thibault, C., St-Pierre, J., Lessard, M. and Bissonnette, N. (2009). Steopontin: an early innate immune marker of Escherichia coli mastitis harbors genetic polymorphisms with possible links with resistance to mastitis. BMC Genomics 10, 444.

    Google Scholar 

  • Amini, A.A. and Nair, L.S. (2011). Lactoferrin: a biologically active molecule for bone regeneration. Curr. Med. Chem. 18 (8), 1220–1229.

    Google Scholar 

  • Aziz, M.M., Ishihara, S., Mishima, Y., Oshima, N., Moriyama, I., Yuki, T., Kadowaki, Y., Rumi, M.A.K., Amano, Y. and Kinoshita, Y. (2009). MFG-E8 attenuates intestinal inflammation in murine experimental colitis by modulating osteopontin-dependent alphavbeta3 integrin signaling. J. Immunol. 182 (11), 7222–7232.

    Google Scholar 

  • Baik, M.G., Lee, M.J. and Choi, Y.J. (1998). Gene expression during involution of mammary gland (review). Int. J. Mol. Med. 2 (1), 39–44.

    Google Scholar 

  • Bani, D. (1997). Relaxin: a pleiotropic hormone. Gen. Pharmacol. Vas. Syst. 28 (1), 13–22.

    Google Scholar 

  • Barlet, J.-P., Champredon, C., Coxam, V., Davicco, M.J. and Tressol, J.C. (1992). Parathyroid hormone-related peptide might stimulate calcium secretion into the milk of goats. J. Endocrinol. 132 (3), 353–359. doi: 10.1677/joe.0.1320353.

    Google Scholar 

  • Barlet, J.-P., Abbas, S.K., Care, A.D., Davicco, M.-J. and Rouffet, J. (1993). Parathyroid hormone-related peptide and milking-induced phosphaturia in dairy cows. Acta Endocrinol. 129 (4), 332–336. doi: 10.1530/acta.0.1290332.

    Google Scholar 

  • Bastian, S.E., Dunbar, A.J., Priebe, I.K., Owens, P.C. and Goddard, C. (2001). Measurement of betacellulin levels in bovine serum, colostrum and milk. J. Endocrinol. 168 (1), 203–212.

    Google Scholar 

  • Baumrucker, C.R. and Erondu, N.E. (2000). Insulin-like growth factor (IGF) system in the bovine mammary gland and milk. J. Mammary Gland Biol. Neoplasia 5, 53–64.

    Google Scholar 

  • Baumrucker, C.R., Campana, W.M., Gibson, C.A. and Kerr, D.E. (1993). Insulin-like growth factors (IGFs) and IGF binding proteins in milk: sources and functions. Endocr. Regul. 27, 157–172.

    Google Scholar 

  • Baxter, R.C. (2000). Insulin-like growth factor (IGF)-binding proteins: interactions with IGFs and intrinsic bioactivities. Am. J. Physiol. Endocrinol. Metab. 278 (6), E967-E976.

    Google Scholar 

  • Belford, D.A., Rogers, M.L., Regester, G.O., Francis, G.L., Smithers, G.W., Liepe, I.J., Priebe, I.K., and Ballard, F.J. (1995). Milk-derived growth factors as serum supplements for the growth of fibroblast and epithelial cells. In Vitro Cell. Dev. Biol. Anim. 31 (10), 752–760.

    Google Scholar 

  • Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., Kawase, K. and Tomita, M. (1992). Identification of the bactericidal domain of lactoferrin. Biochim. Biophys. Acta 1121, 130–136.

    Google Scholar 

  • Bernard-Pierrot, I., Delb, J., Heroult, M., Rosty, C., Souli, P., Barritault, D., Milhiet, P.E. and Courty, J. (2004). Heparin affin regulatory peptide in milk: its involvement in mammary gland homeostasis. Biochem. Biophys. Res. Commun. 314, 277–282.

    Google Scholar 

  • Bernstein, K.E., Shen, X.Z., Gonzalez-Villalobos, R.A., Billet, S., Okwan-Duodu, D., Ong, F.S. and Fuchs, S. (2011). Different in vivo functions of the two catalytic domains of angiotensin-converting enzyme (ACE). Curr. Opin. Pharmacol. 11 (2), 105–111.

    Google Scholar 

  • Binder, C., Hagemann, Th., Husen, B., Schulz, M. and Einspanier, A. (2002). Relaxin enhances in-vitro invasiveness of breast cancer cell lines by up-regulation of matrix metalloproteases. Mol. Hum. Reprod. 8 (9), 789–796. doi: 10.1093/molehr/8.9.789.

    Google Scholar 

  • Blum, J.W. and Baumrucker, C.R. (2008). Insulin-like growth factors (IGFs), IGF binding proteins, and other endocrine factors in milk: role in the newborn. Adv. Exp. Med. Biol. 606, 397–422.

    Google Scholar 

  • Boehmer, J.L., Bannerman, D.D., Shefcheck, K. and Ward, J.L. (2008). Proteomic analysis of differentially expressed proteins in bovine milk during experimentally induced Escherichia coli mastitis. J. Dairy Sci. 91 (11), 4206–4218.

    Google Scholar 

  • Bonnet, D., Lemoine, F.M., Khoury, E., Pradelles, E., Najman, A. and Guigon, M. (1992). Reversible inhibitory effects and absence of toxicity of the tetrapeptide acetyl-N-Ser-Asp-Lys-Pro(AcSDKP) in human long term bone marrow culture. Exp. Hematol. 20, 1165–1169.

    Google Scholar 

  • Booth, B.W., Boulanger, C.A., Anderson, L.H. and Smith, G.H. (2011). The normal mammary microenvironment suppresses the tumorigenic phenotype of mouse mammary tumor virus-neu-transformed mammary tumor cells. Oncogene 30 (6), 679-689.

    Google Scholar 

  • Brada, N., Gordon, M.M., Shao, J.S., Wen, J. and Alpers, D.H. (2000). Production of gastric intrinsic factor, transcobalamin, and haptocorrin in opossum kidney cells. Am. J. Physiol. Renal Physiol. 279 (6), F1006–F1013.

    Google Scholar 

  • Brawand, D., Wahli, W. and Kaessman, H. (2008). Loss of egg yolk genes in mammals and the origin of lactation and placentation. PLoS Biol. 6 (3), e63.

    Google Scholar 

  • Buchanan, F.C., Van Kessel, A.G., Waldner, C., Christensen, D.A., Laarveld, B. and Schmutz, S.M. (2003). Hot topic: an association between a leptin single nucleotide polymorphism and milk and protein yield. J. Dairy Sci. 86 (10), 3164–3166.

    Google Scholar 

  • Chockalingam, A., Paape, M.J. and Bannerman, D.D. (2005). Increased milk levels of transforming growth factor-alpha, beta1, and beta2 during Escherichia coli-induced mastitis. J. Dairy Sci. 88 (6), 1986–1993.

    Google Scholar 

  • Cohen, S. (1962). Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J. Biol. Chem. 237, 1555–1562.

    Google Scholar 

  • Copp, A.J. and Greene, N.D.E. (2010). Genetics and development of neural tube defects. J. Pathol. 220 (2), 217–230.

    Google Scholar 

  • Crabtree, B., Holloway, D.E., Baker, M.D., Acharya, K.R. and Subramanian, V. (2007). Biological and structural features of murine angiogenin-4, an angiogenic protein. Biochemistry 46 (9), 2431–2443.

    Google Scholar 

  • Davicco, M.-J., Rouffet, J., Durand, D., Lefaivre, J. and Barlet, J.-P. (1993). Parathyroid hormone-related peptide may increase mammary blood flow. J. Bone Mineral Res. 8 (12), 1519–1524. doi: 10.1002/jbmr.5650081215.

    Google Scholar 

  • Donker, J.D. (1958). Lactation studies. I. Effects upon milk ejection in the bovine of various injection treatments using oxytocin and relaxin. J. Dairy Sci. 41 (4), 537–544.

    Google Scholar 

  • Dyer, K.D. and Rosenberg, H.F. (2006). The RNase a superfamily: generation of diversity and innate host defense. Mol. Divers. 10, 585–597.

    Google Scholar 

  • Fedosov, S.N., Petersen, T.E. and Nexo, E. (1996). Transcobalamin from cow milk: isolation and physico-chemical properties. Biochim. Biophys. Acta 1292 (1), 113–119.

    Google Scholar 

  • Ferrari, S., Rizzoli, R., Chaponnier, C., Gabbiani, G. and Bonjour, J.P. (1993). Parathyroid hormone-related protein increases cAMP production in mammary epithelial cells. Am. J. Physiol. Endocrinol. Metabol. 264 (3), E471–E475.

    Google Scholar 

  • Fett, J.W., Strydom, D.J. Lobb, R.R., Alderman, E.M., Bethune, J.L., Riordan, J.F. and Vallee, B.L. (1985). Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 24 (20), 5480–5486.

    Google Scholar 

  • Feuermann, Y., Mabjeesh, S.J. and Shamay, A. (2004). Leptin affects prolactin action on milk protein and fat synthesis in the bovine mammary gland. J. Dairy Sci. 87 (9), 2941–2946.

    Google Scholar 

  • Feuermann, Y., Mabjeesh, S.J., Niv-Spector, L., Levin, D. and Shamay, A. (2006). Prolactin affects leptin action in the bovine mammary gland via the mammary fat pad. J. Endocrinol. 191 (2), 407–413. doi: 10.1677/joe.1.06913.

    Google Scholar 

  • Feuermann, Y., Shamay, A. and Mabjeesh, S.J. (2008). Leptin up-regulates the lactogenic effect of prolactin in the bovine mammary gland in vitro. J. Dairy Sci. 91 (11), 4183–4189.

    Google Scholar 

  • Firth, S.M. and Baxter, R.C. (2002). Cellular actions of the insulin-like growth factor binding proteins. Endocr. Rev. 23 (6). 824–854.

    Google Scholar 

  • Fox, P.F. (2001). Milk proteins as food ingredients. Int. J. Dairy Technol. 54, 41–55.

    Google Scholar 

  • Frankshun, A.-L., Ho, T.-Y., Steinetz, B.G., Bartol, F.F. and Bagnell, C.A. (2009). Biological activity of relaxin in porcine milk. Ann. N. Y. Acad. Sci. 1160 (1), 164–168. doi: 10.1111/j.1749–6632.2008.03822.x.

    Google Scholar 

  • Franzen, A. and Heinegard, E. (1985). Isolation and characterizationof two sialoproteins present nlyin bone calcified matrix. Biochem. J. 232, 715–724.

    Google Scholar 

  • Gibson, C.A., Staley, M.D. and Baumrucker, C.R. (1999). Identification of IGF binding proteins in bovine milk and the demonstration of IGFBP-3 synthesis and release by bovine mammary epithelial cells. J. Anim. Sci. 77 (6), 1547–1557.

    Google Scholar 

  • Girardet, J.M. and Linden, G. (1996). PP3 component of bovine milk: a phosphorylated whey glycoprotein. J. Dairy Res. 63 (2), 333–350.

    Google Scholar 

  • Girardet, J.M., Saulnier, F., Gaillard, J.L., Ramet, J.P. and Humbert, G. (2000). Camel (Camelus dromedarius) milk PP3: evidence for an insertion in the amino-terminal sequence of the camel milk whey protein. Biochem. Cell Biol. 78 (1), 19–26.

    Google Scholar 

  • Goff, J.P., Reinhardt, T.A., Lee, S. and Hollis, B.W. (1991). Parathyroid hormone-related peptide content of bovine milk and calf blood assessed by radioimmunoassay and bioassay. Endocrinology 129 (6), 2815–2819. doi: 10.1210/endo-129-6-2815.

    Google Scholar 

  • Goldsmith, L.T., Lust, G. and Steinetz, B.G. (1994). Transmission of relaxin from lactating bitches to their offspring via suckling. Biol. Reprod. 50 (2), 258–265. doi: 10.1095/biolreprod50.2.258.

    Google Scholar 

  • Greenwalt, D.E. and Mather, I.H. (1985). Characterization of an apically derived epithelial membrane glycoprotein from bovine milk, which is expressed in capillary endothelia in diverse tissues. J. Cell Biol. 100 (2), 397–408. doi: 10.1083/jcb.100.2.397.

    Google Scholar 

  • Greenwalt, D.E., Lipsky, R.H., Ockenhouse, C.F., Ikeda, H., Tandon, N.N. and Jamieson, G.A. (1992). Membrane glycoprotein CD36: a review of its roles in adherence, signal transduction, and transfusion medicine. Blood 80 (5), 1105–1115.

    Google Scholar 

  • Guidry, A.J., Butler, J.E., Pearson, R.E. and Weinland, B.T. (1980). IgA, IgG1, IgG2, IgM, and BSA in serum and mammary secretion throughout lactation. Vet. Immunol. Immunopathol. 1 (4), 329–341.

    Google Scholar 

  • Gullberg, R. (1973). Possible influence of vitamin B12–binding protein in milk on the intestinal flora in breast fed infants. Scand. J. Gastroenterol. 8, 497–503.

    Google Scholar 

  • Gunther, J., Koczan, D., Yang, W., Nurnberg, G., Repsilber, D., Schuberth, H.J., Park, Z., Maqbool, N., Molenaar, A. and Seyfert, H.M. (2009). Assessment of the immune capacity of mammary epithelial cells: comparison with mammary tissue after challenge with Escherichia coli. Vet. Res. 40 (4), 31.

    Google Scholar 

  • Harmon, R.J., Schanbacher, F.L., Ferguson, L.C. and Smith, K.L. (1976). Changes in lactoferrin, immunoglobulin G, bovine serum albumin, and alpha-lactalbumin during acute experimental and natural coliform mastitis in cows. Infect. Immun. 13 (2), 533–542.

    Google Scholar 

  • Hayes, M., Ross, R.P., Fitzgerald, G.F. and Stanton, C. (2007). Putting microbes to work: dairy fermentation, cell factories and bioactive peptides. Biotechnol. J. 2, 426–434.

    Google Scholar 

  • Heegaard, N.H.H., Hansen, S.I. and Holm, J. (2006). A novel specific heparin-binding activity of bovine folate-binding protein characterized by capillary electrophoresis. Electrophoresis 27 (5–6), 1122–1127.

    Google Scholar 

  • Hens, J.R., Rogers, G.W., Huott, M.L. and Patton, S. (1995). Associations of the epithelial mucin, PAS-1, with yield, health, and reproductive traits in holstein dairy cows. J. Dairy Sci. 78 (11), 2473–2480.

    Google Scholar 

  • Hernandez-Ledesma, B., Amigo, L., Recio, I. and Bartolome, B. (2007). ACE-inhibitory and radical-scavenging activity of peptides derived from beta-lactoglobulin f(19–25). Interactions with ascorbic acid. J. Agric. Food Chem. 55 (9), 3392–3397.

    Google Scholar 

  • Hernandez-Ledesma, B., Quiros, A., Amigo, L. and Recio, I. (2007). Identification of bioactive peptides after digestion of human milk and infant formula with pepsin and pancreatin. Int. Dairy J. 17, 42–49.

    Google Scholar 

  • Heroult, M., Bernard-Pierrot, I., Delbe, J., Hamma-Kourbali, Y., Katsoris, P., Barritault, D., Papadimitriou, E., Plouet, J. and Courty, J. (2004). Heparin affin regulatory peptide binds to vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. Oncogene 23 (9), 1745–1753.

    Google Scholar 

  • Hollis, B.W. and Draper, H.H. (1979). A comparative study of vitamin D binding globulins in milk. Comp. Biochem. Physiol. B 64 (1), 41–46.

    Google Scholar 

  • Holm, J. and Hansen, S.I. (2003). Characterization of a high affinity folate binding protein in porcine serum: ionic charge, concentration—dependent polymerization and ligand binding mechanism. Biosci. Rep. 23 (5–6), 339–351.

    Google Scholar 

  • Hoshi, F., Nagai, D., Higuchi, S., Noso, T., Takahashi, A. and Kawamura, S. (1996). Purification of bovine beta 2-microglobulin from colostrum and its complete amino acid sequence. Vet. Immunol. Immunopathol. 53 (1–2), 29–38.

    Google Scholar 

  • Hvarregaard, J., Andersen, M.H., Berglund, L., Rasmussen, J.T. and Petersen, T.E. (1996). Characterization of glycoprotein PAS-6/7 from membranes of bovine milk fat globules. Eur. J. Biochem. 240 (3), 628–636. doi: 10.1111/j.1432–1033.1996.0628h.x.

    Google Scholar 

  • Iacopetta, B.J., Grieu, F., Horisberger, M. and Sunahara, G.I. (1992). Epidermal growth factor in human and bovine milk. Acta Paediatr. 81 (4), 287–291.

    Google Scholar 

  • Jenness, R. (1974). The composition of milk, in, Lactation: A Comprehensive Treatise, B.L. Larson, V.R. Smith, eds., Academic, New York.

    Google Scholar 

  • Johnson, E.A. (1994). Egg white lysozyme as a preservative for use in foods, in, Egg Uses and Processing Technologies—New Developments, J.S. Sim and S. Nakai, eds., CAB International, Wallingford. pp. 177–192.

    Google Scholar 

  • Joss, J.L., Molloy, M.P., Hinds, L. and Deane, E. (2009). A longitudinal study of the protein components of marsupial milk from birth to weaning in the tammar wallaby (Macropus eugenii). Dev. Comp. Immunol. 33 (2), 152–161.

    Google Scholar 

  • Karande, A.A., Sridhar, L., Gopinath, K.S. and Adiga, P.R. (2001). Riboflavin carrier protein: a serum and tissue marker for breast carcinoma. Int. J. Cancer 95 (5), 277–281.

    Google Scholar 

  • Kent, J.C., Arthur, P.G., Mitoulas, L.R. and Hartmann, P.E. (2009). Why calcium in breastmilk is independent of maternal dietary calcium and vitamin D. Breastfeed. Rev. 17 (2), 5–11.

    Google Scholar 

  • Knight, C.H., Peaker, M. and Wilde, C.J. (1998). Local control of mammary development and function. Rev. Reprod. 3 (2), 104–112. doi: 10.1530/ror.0.0030104.

    Google Scholar 

  • Korhonen, H. (1977). Antimicrobial factors in bovine colostrum. J. Sci. Agric. Soc. Finland 49, 434–447.

    Google Scholar 

  • Kuenzi, M.J. and Sherwood, O.D. (1992). Monoclonal antibodies specific for rat relaxin. VII. Passive immunization with monoclonal antibodies throughout the second half of pregnancy prevents development of normal mammary nipple morphology and function in rats. Endocrinology 131 (4), 1841–1837. doi: 10.1210/en.131.4.1841.

    Google Scholar 

  • Kvistgaard, A.S., Pallesen, L.T., Arias, C.F., López, S., Petersen, T.E., Heegaard, C.W. and Rasmussen, J.T. (2004). Inhibitory effects of human and bovine milk constituents on rotavirus infections. J. Dairy Sci. 87 (12), 4088–4096.

    Google Scholar 

  • Lacy-Hulbert, S.J., Woolford, M.W., Nicholas, G.D., Prosser, C.G. and Stelwagen, K. (1999). Effect of milking frequency and pasture intake on milk yield and composition of late lactation cows. J. Dairy Sci. 82 (6), 1232–1239.

    Google Scholar 

  • Lalmanach, G., Naudin, C., Lecaille, F. and Fritz, H. (2010). Kininogens: more than cysteine protease inhibitors and kinin precursors. Biochimie 92 (11), 1568–1579.

    Google Scholar 

  • Lamson, G., Giudice, L.C. and Rosenfeld, R.G. (1991). A simple assay for proteolysis of IGFBP-3. J. Clin. Endocrinol. Metab. 72, 1391–1393.

    Google Scholar 

  • Law, F.M.K., Moate, P.J., Leaver, D.D., Diefenbach-Jagger, H., Grill, V., Ho, P.W.M. and Martin, T.J. (1991). Parathyroid hormone-related protein in milk and its correlation with bovine milk calcium. J. Endocrinol. 128 (1), 21-NP. doi: 10.1677/joe.0.1280021.

    Google Scholar 

  • Legrand, D. and Mazurier, J. (2010). A critical review of the roles of host lactoferrin in immunity. BioMetals 23 (3), 365–376.

    Google Scholar 

  • Legrand, D., Pierce, A., Elass, E., Carpentier, M., Mariller, C. and Mazurier, J. (2008). Lactoferrin structure and functions. Adv. Exp. Med. Biol. 606, 163–194.

    Google Scholar 

  • Liao, T.-D., Yang, X.-P., D’Ambrosio, M., Zhang, Y., Rhaleb, N.-E. and Carretero, O.A. (2010). N-Acetyl-seryl-aspartyl-lysyl-proline attenuates renal injury and dysfunction in hypertensive rats with reduced renal mass: council for high blood pressure research. Hypertension 55 (2), 459–467.

    Google Scholar 

  • Lin, C.Q., Rhaleb, N.-E., Yang, X.-P., Liao, T.-D., D’Ambrosio, M.A. and Carretero, O.A. (2008). Prevention of aortic fibrosis by N-Acetyl-seryl-aspartyl-lysyl-proline in angiotensin II-induced hypertension. Am. J. Physiol. Heart Circ. Physiol. 295 (3), H1253–H1261.

    Google Scholar 

  • Liu, C., Erickson, A.K. and Henning, D.R. (2005). Distribution and carbohydrate structures of high molecular weight glycoproteins, MUC1 and MUCX, in bovine milk. J. Dairy Sci. 88 (12), 4288–4294.

    Google Scholar 

  • Liu, X.H., Bai, C.G., Xu, Z.Y., Huang, S.D., Yuan, Y., Gong, D.J. and Zhang, J.R. (2008). Therapeutic potential of angiogenin modified mesenchymal stem cells: angiogenin improves mesenchymal stem cells survival under hypoxia and enhances vasculogenesis in myocardial infarction. Microvasc. Res. 76 (1), 23–30.

    Google Scholar 

  • Lonnerdal, B. (2010). Bioactive proteins in human milk: mechanisms of action. J. Paediatr. 156, S26–S30.

    Google Scholar 

  • Lonnerdal, B. (2011). Biological effects of novel bovine milk fractions. Nestle Nutr. Workshop Ser. Paediatr. Programme 67, 41–54.

    Google Scholar 

  • Mader, J.S., Smyth, D., Marshall, J. and Hoskin, D.W. (2006). Bovine lactoferricin inhibits basic fibroblast growth factor- and vascular endothelial growth factor165-induced angiogenesis by competing for heparin-like binding sites on endothelial cells. Am. J. Pathol. 169 (5), 1753–1766.

    Google Scholar 

  • Manzoni, P., Mostert, M. and Stronati, M. (2011). Lactoferrin for prevention of neonatal infections. Curr. Opin. Infect. Dis. 24 (3), 177–182.

    Google Scholar 

  • Marek, A., Zagierski, M., Liberek, A., Aleksandrowicz, E., Korzon, M., Krzykowski, G., Kaminska, B. and Szlagatys-Sidorkiewicz, A. (2009). TGF-beta(1), IL-10 and IL-4 in colostrum of allergic and nonallergic mothers. Acta Biochim. Pol. 56 (3), 411–414.

    Google Scholar 

  • Masson, P.L. and Heremans, J.F. (1971). Lactoferrin in milk from different species. Comp. Biochem. Physiol. B 39, 119–129.

    Google Scholar 

  • Mather, I.H. (2000). A review and proposed nomenclature for major proteins of the milk-fat globule membrane. J. Dairy Sci. 83 (2), 203–247.

    Google Scholar 

  • McGuckin, M.A., Every, A.L., Skene, C.D., Linden, S.K., Chionh, Y.T., Swierczak, A., McAuley, J., Harbour, S., Kaparakis, M., Ferrero, R. and Sutton, P. (2007). Muc1 mucin limits both Helicobacter pylori colonization of the murine gastric mucosa and associated gastritis. Gastroenterology 133 (4), 1210–1218.

    Google Scholar 

  • McLaughlin, R.L., Phukan, J., McCormack, W., Lynch, D.S., Greenway, M., Cronin, S., Saunders, J., Slowik, A., Tomik, B., Andersen, P.M., Bradley, D.G., Jakeman, P. and Hardiman, O. (2010). Angiogenin levels and ANG genotypes: dysregulation in amyotrophic lateral sclerosis. PLoS ONE [Electronic Resource] 5 (11), e15402.

    Google Scholar 

  • Meisel, H. (2005). Biochemical properties of peptides encrypted in bovine milk proteins. Curr. Med. Chem. 12, 1905–1919.

    Google Scholar 

  • Menzies, K.K., Lefevre, C., Sharp, J.A., Macmillan, K.L., Sheehy, P.A. and Nicholas, K.R. (2009). A novel approach identified the FOLR1 gene, a putative regulator of milk protein synthesis. Mamm. Genome 20 (8), 498–503.

    Google Scholar 

  • Morita, Y., Matsuyama, H., Serizawa, A., Takeya, T. and Kawakami, H. (2008). Identification of angiogenin as the osteoclastic bone resorption-inhibitory factor in bovine milk. Bone 42 (2), 380–387.

    Google Scholar 

  • Murray, B.A. and Fitzgerald, R.J. (2007). Angiotensin converting enzyme inhibitory peptides derived from food proteins: biochemistry, bioactivity and production. Curr. Pharm. Design 13, 773–791.

    Google Scholar 

  • Neville, M.C, Keller, R.P., Casey, C. and Allen, J.C. (1994). Calcium partitioning in human and bovine milk. J. Dairy Sci. 77 (7), 1964–1975.

    Google Scholar 

  • Okada, M., Ohmura, E., Kamiya, Y., Muakami, H., Onoda, N. and Iwashita, M. (1991). Transforming growth factor (TGF)-alpha in human milk. Life Sci. 48, 1151–1156.

    Google Scholar 

  • Okada, H., Schanbacher, F.L., McCauley, L.K., Weckmann, M.T., Capen, C.C. and Rosol, T.J. (1996). In vitro model of parathyroid hormone-related protein secretion from mammary cells isolated from lactating cows. Domest. Anim. Endocrinol. 13 (5), 399–410.

    Google Scholar 

  • Pallesen, L.T., Berglund, L., Rasmussen, L.K., Petersen, T.E. and Rasmussen, J.T. (2002). Isolation and characterization of MUC15, a novel cell membrane-associated mucin. Eur. J. Biochem. 269 (11), 2755–2763. doi: 10.1046/j.1432–1033.2002.02949.x.

    Google Scholar 

  • Pallesen, L.T., Pedersen, L.R.L., Petersen, T.E. and Rasmussen, J.T. (2007). Characterization of carbohydrate structures of bovine MUC15 and distribution of the mucin in bovine milk. J. Dairy Sci. 90 (7), 3143–3152.

    Google Scholar 

  • Papadimitriou, E., Polykratis, A., Courty, J., Koolwijk, P., Heroult, M. and Katsoris, P. (2001). HARP induces angiogenesis in vivo and in vitro: implication of N or C terminal peptides. Biochem. Biophys. Res. Commun. 282 (1), 306–313.

    Google Scholar 

  • Papadimitriou, E., Mikelis, C., Lampropoulou, E., Koutsioumpa, M., Theochari, K., Tsirmoula, S., Theodoropoulou, C., Lamprou, M., Sfaelou, E., Vourtsis, D. and Boudouris, P. (2010). Roles of pleiotrophin in tumor growth and angiogenesis. Eur. Cytokine Netw. 20 (4), 180–190.

    Google Scholar 

  • Parodi, P.W. (2007). A role for milk proteins and their peptides in cancer prevention. Curr. Pharm. Design 13, 813–828.

    Google Scholar 

  • Parola, R., Macchi, E., Fracchia, D., Sabbioni, A., Avanzi, D., Motta, M., Accornero, P. and Baratta, M. (2007). Comparison between plasma and milk levels of leptin during pregnancy and lactation in cow, a relationship with β-lactoglobulin. J. Anim. Physiol. Anim. Nutr. 91 (5–6), 240–246. doi: 10.1111/j.1439–0396.2007.00698.x.

    Google Scholar 

  • Peng, H., Carretero, O.A., Brigstock, D.R., Oja-Tebbe, N. and Rhaled, N.E. (2003). Ac-SDKP reverses cardiac fibrosis in rats with renovascular hypertension. Hypertension 42, 1164–1170.

    Google Scholar 

  • Peroni, D.G., Piacentini, G.L., Bodini, A., Pigozzi, R. and Boner, A.L. (2009). Transforming growth factor-beta is elevated in unpasteurized cow’s milk. Pediatr. Allergy Immunol. 20 (1), 42–44.

    Google Scholar 

  • Persaud, D.R. and Barranco-Mendoza, A. (2004). Bovine serum albumin and insulin-dependent diabetes mellitus: is cow’s milk still a possible toxicological causative agent of diabetes? Food Chem. Toxicol. 42 (5), 707–714.

    Google Scholar 

  • Pinotti, L. and Rosi, F. (2006). Leptin in bovine colostrum and milk. Horm. Metab. Res. 38 (02), 89, 93. doi: 10.1055/s-2006–925119.

    Google Scholar 

  • Prosser, C.G., Farr, V.C. and Davis, S.R. (1994). Increased mammary blood flow in the lactating goat induced by parathyroid hormone-related protein. Exp. Physiol. 79 (4), 565–570.

    Google Scholar 

  • Quiros, A., Hernandez-Ledesma, B., Ramos, M., Amigo, L. and Recio, I. (2005). Angiotensin converting enzyme inhibitory activity of peptides derived from caprine kafir. J. Dairy Sci. 88, 3480–3487.

    Google Scholar 

  • Rao, R.K., Baker, R.D. and Baker, S.S. (1998). Bovine milk inhibits proteolytic degradation of epidermal growth factor in human gastric and duodenal lumen. Peptides 19 (3), 495–504.

    Google Scholar 

  • Rasero, R., Sacchi, P., Rosati, S., Cauvin, E. and Maione, S. (2002). Molecular analysis of the length polymorphic MUC1 gene in cattle. J. Anim. Breed. Genet. 119 (5), 342–349. doi: 10.1046/j.1439–0388.2002.00351.x.

    Google Scholar 

  • Ratcliffe, W.A., Thompson, G.E., Caret, A.D. and Peaker, M. (1992). Production of parathyroid hormone-related protein by the mammary gland of the goat. J. Endocrinol. 133 (1), 87–93. doi: 10.1677/joe.0.1330087.

    Google Scholar 

  • Rauvala, H. (1989). An 18 kDa heparin-binding protein of developing brain that is distinct from fibroblast growth factors. EMBO J. 8, 2933–2941.

    Google Scholar 

  • Rennison, M.E., Kerr, M., Addey, C.V., Handel, S.E., Turner, M.D., Wilde, C.J. and Burgoyne, R.D. (1993). Inhibition of constitutive protein secretion from lactating mouse mammary epithelial cells by FIL (feedback inhibitor of lactation), a secreted milk protein. J. Cell Sci. 106 (2), 641–648.

    Google Scholar 

  • Restani, P., Ballabio, C., Cattaneo, A., Isoardi, P., Terracciano, L. and Fiocchi, A. (2004). Characterization of bovine serum albumin epitopes and their role in allergic reactions. Allergy 59, 21–24. doi: 10.1111/j.1398–9995.2004.00568.x.

    Google Scholar 

  • Ricci, I., Artacho, R. and Olalla, M. (2010). Milk protein peptides with angiotensin I-converting enzyme inhibitory (ACEI) activity. Crit. Rev. Food Sci. Nutr. 50 (5), 390–402.

    Google Scholar 

  • Rijnkels, M., Kabotyanski, E., Montazer-Torbati, M.B., Beauvais, C.H., Vassetzky, Y., Rosen, J.M. and Devinoy, E. (2010). The epigenetic landscape of mammary gland development and functional differentiation. J. Mammary Gland Biol. Neoplasia 15 (1), 85–100.

    Google Scholar 

  • Rusu, D., Drouin, R., Pouliot, Y., Gauthier, S. and Poubelle, P.E. (2010). A bovine whey protein extract stimulates human neutrophils to generate bioactive IL-1Ra through a NF-kappaB- and MAPK-dependent mechanism. J. Nutr. 140 (2), 382–391.

    Google Scholar 

  • Sacchi, T.B., Bani, D., Brandi, M.L., Falchetti, A. and Bigazzi, M. (1994a). Relaxin influences growth, differentiation and cell-cell adhesion of human breast-cancer cells in culture. Int. J. Cancer 57 (1), 129–134.

    Google Scholar 

  • Sacchi, T.B., Bani, D., Brandi, M.L., Falchetti, A. and Bigazzi, M. (1994b). Relaxin influences growth, differentiation and cell-cell adhesion of human breast-cancer cells in culture. Int. J. Cancer 57 (1), 129–134. doi: 10.1002/ijc.2910570123.

    Google Scholar 

  • Sando, L., Pearson, R., Gray, C., Parker, P., Hawken, R., Thomson, P.C., Meadows, J.R.S., Kongsuwan, K., Smith, S. and Tellam, R.L. (2009). Bovine Muc1 is a highly polymorphic gene encoding an extensively glycosylated mucin that binds bacteria. J. Dairy Sci. 92 (10), 5276–5291.

    Google Scholar 

  • Savilahti, E., Siltanen, M., Kajosaari, M., Vaarala, O. and Saarinen, K.M. (2005). IgA antibodies, TGF-beta1 and -beta2, and soluble CD14 in the colostrum and development of atopy by age 4. Pediatr. Res. 58 (6), 1300–1305.

    Google Scholar 

  • Senger, D.R., Perruzz, C.A., Papadopoulos, A. and Tennin, D.G. (1989). Purification of a human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin. Biochim. Biophys. Acta 996, 43–48.

    Google Scholar 

  • Severin, S. and Wenshui, X. (2005). Milk biologically active components as nutraceuticals: review. Crit. Rev. Food Sci. Nutr. 45, 645–656.

    Google Scholar 

  • Shaffhausen, D.D., Jordan, R.M. and Dracy, A.E. (1954). The effect of relaxin upon milk ejection I. The let-down effect upon sheep. J. Dairy Sci. 37 (10), 1173–1175.

    Google Scholar 

  • Shcheglovitova, O.N., Maksyanina, E.V., Ionova, I.I., Rustam’yan, Y.L. and Komolova, G.S. (2003). Cow milk angiogenin induces cytokine production in human blood leukocytes. Bull. Exp. Biol. Med. 135 (2), 158–160.

    Google Scholar 

  • Sheehy, P.A., Riley, L.G., Raadsma, H.W., Williamson, P. and Wynn, P.C. (2009). A functional genomics approach to evaluate candidate genes located in a QTL interval for milk production traits on BTA6. Anim. Genet. 40 (4), 492–498.

    Google Scholar 

  • Sheldrake, R.F., Hoare, R.J.T. and McGregor, G.D. (1983). Lactation stage, parity, and infection affecting somatic cells, electrical conductivity, and serum albumin in milk. J. Dairy Sci. 66 (3), 542–547.

    Google Scholar 

  • Silva, L.F.P., VandeHaar, M.J., Weber Nielsen, M.S. and Smith, G.W. (2002). Evidence for a local effect of leptin in bovine mammary gland. J. Dairy Sci. 85 (12), 3277–3286.

    Google Scholar 

  • Smith, G.H. (1996). TGF-beta and functional differentiation. J. Mammary Gland Biol. Neoplasia 1 (4), 343–352.

    Google Scholar 

  • Smith, J.L. and Sheffield, L.G. (2002). Production and regulation of leptin in bovine mammary epithelial cells. Domest. Anim. Endocrinol. 22 (3), 145–154.

    Google Scholar 

  • Smolenski, G., Haines, S., Kwan, F.Y.S., Bond, J., Farr, V., Davis, S.R., Stelwagen, K. and Wheeler, T.T. (2007). Characterisation of host defence proteins in milk using a proteomic approach. J. Prot. Res. 6 (1), 207–215.

    Google Scholar 

  • Sorensen, E.S. and Petersen, T.E. (1993). Phosphorylation, glycosylation and amino acid sequence of component PP3 from the proteose peptone fraction of bovine milk. J. Dairy Res. 60, 535–542.

    Google Scholar 

  • Sorrentino, S. (2010). The eight “canonical” ribonucleases: molecular diversity, catalytic properties, and special biological actions of the enzyme proteins. FEBS Lett. 584, 2194–2200.

    Google Scholar 

  • Sousa, A., Passarinha, L.A., Rodrigues, L.R., Teixeira, J.A., Mendonca, A. and Queiroz, J.A. (2008). Separation of different forms of proteose peptone 3 by hydrophobic interaction chromatography with a dual salt system. Biomed. Chromatogr. 22 (5), 447–449.

    Google Scholar 

  • Spitsberg, V.L. (2005). Invited review: Bovine milk fat globule membrane as a potential nutraceutical. J. Dairy Sci. 88 (7), 2289–2294.

    Google Scholar 

  • Standal, T., Borset, M. and Sundan, A. (2004). Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp. Oncol. 26 (3), 179–184.

    Google Scholar 

  • Strandberg, Y., Gray, C., Vuocolo, T., Donaldson, L., Broadway, M. and Tellam, R. (2005). Lipopolysaccharide and lipoteichoic acid induce different innate immune responses in bovine mammary epithelial cells. Cytokine 31 (1), 72–86.

    Google Scholar 

  • Strydom, D.J., Fett, J.W., Lobb, R.R., Alderman, E.M., Bethune, J.L., Riordan, J.F. and Vallee, B.L. (1985). Amino acid sequence of human tumor derived angiogenin. Biochemistry 4 (20), 5486–5494.

    Google Scholar 

  • Strydom, D.J., Bond, M.D. and Vallee, B.L. (1997). An angiogenic protein from bovine serum and milk–purification and primary structure of angiogenin-2. Eur. J. Biochem. 247 (2), 535–544.

    Google Scholar 

  • Svendsen, I.B., Hansen, S.I., Holm, J. and Lyngbye, J. (1984). The complete amino acid sequence of the folate binding protein from cow’s milk. Carlsberg Res. Commun. 49, 123–131.

    Google Scholar 

  • Swamy, N., Head, J.F., Weitz, D. and Ray, R. (2002). Biochemical and preliminary crystallographic characterization of the vitamin D sterol- and actin-binding by human vitamin D-binding protein. Arch. Biochem. Biophys. 402 (1), 14–23.

    Google Scholar 

  • Taylor, A.J. and Leach, R.M. (1995). Enzymes in the food industry, in, Enzymes in Food Processing, G.A. Tucker and L.F.J. Woods, eds., Blackie Academic & Professional, Glasgow.

    Google Scholar 

  • Tong, J., Wei, H.X., Liu, X.F., Hu, W.P., Bi, M.J., Wang, Y.Y, Li, Q.Y. and Li, N. (2011). Production of recombinant human lysozyme in the milk of transgenic pigs. Transgenic Res. 20 (2), 417–419.

    Google Scholar 

  • Topper, Y.J. and Freeman, C.S. (1980). Multiple interactions in the developmental biology of the mammary gland. Physiol. Rev. 80, 1049–1056.

    Google Scholar 

  • Trouillon, R., Kang, D.-K., Chang, S. and O’Hare, D. (2011). Angiogenin induces nitric oxide release independently from its RNase activity. Chem. Commun. 47 (12), 3421–3423.

    Google Scholar 

  • Unger, T. (2002). The role of the renin-angiotensin system in the development of cardiovascular disease. Am. J. Cardiol. 89, 3–9.

    Google Scholar 

  • Urquhart, B.L., Gregor, J.C., Chande, N., Knauer, M.J., Tirona, G. and Kim, R.B. (2010). The human proton-coupled folate transporter (hPCFT): modulation of intestinal expression and function by drugs. Am. J. Physiol. Gastrointest. Liver Physiol. 298 (2), G248–G254.

    Google Scholar 

  • Vanselow, J., Yang, W., Herrmann, J., Zerbe, H., Schuberth, H.J., Petzl, W., Tomek, W. and Seyfert, H.M. (2006). DNA-remethylation around a STAT5-binding enhancer in the alphaS1-casein promoter is associated with abrupt shutdown of alphaS1-casein synthesis during acute mastitis. J. Mol. Endocrinol. 37 (3), 463–477.

    Google Scholar 

  • Visalsok, T., Shigeru, H., Satoshi, Y. and Souichi, K. (2004). Effects of a lactoperoxidase-thiocyanate-hydrogen peroxide system on Salmonella enteritidis in animal or vegetable foods. Int. J. Food Microbiol. 93, 175–183.

    Google Scholar 

  • Weber, M.A. (2001). Vasopeptidase inhibitors. Lancet 358, 1525–1532.

    Google Scholar 

  • Wilde, C.J., Addey, C.V. and Peaker, M. (1996). Effects of immunization against an autocrine inhibitor of milk secretion in lactating goats. J. Physiol. 491 (Pt 2), 465–469.

    Google Scholar 

  • Wilde, C., Knight, C.H. and Flint, D. (1999). Control of milk secretion and apoptosis during mammary involution. J. Mammary Gland Biol. Neoplasia 4 (2), 129–136. doi: 10.1023/a:1018717006152.

    Google Scholar 

  • Wilson, W.E., Lazarus, L.H. and Tomer, K.B. (1989). Bradykinin and kininogens in bovine milk. J. Biol. Chem. 264 (30), 17777–17783.

    Google Scholar 

  • Wojcik, S.F., Schanbacher, F.L., McCauley, L.K., Zhou, H., Kartsogiannis, V., Capen, C.C. and Rosol, T.J. (1998). Cloning of bovine parathyroid hormone-related protein (PTHrP) cDNA and expression of PTHrP mRNA in the bovine mammary gland. J. Mol. Endocrinol. 20 (2), 271–280. doi: 10.1677/jme.0.0200271.

    Google Scholar 

  • Wysolmerski, J.J., McCaughern-Carucci, J.F., Daifotis, A.G., Broadus, A.E. and Philbrick, W.M. (1995). Overexpression of parathyroid hormone-related protein or parathyroid hormone in transgenic mice impairs branching morphogenesis during mammary gland development. Development 121 (11), 3539–3547.

    Google Scholar 

  • Yalçin, A.S. (2006). Emerging therapeutic potential of whey proteins and peptides. Curr. Pharm. Design 12 (13), 1637–1643.

    Google Scholar 

  • Yamamura, J., Takada, Y., Goto, M., Kumegawa, M. and Aoe, S. (2000). Bovine milk kininogen fragment 1.2 promotes the proliferation of osteoblastic MC3T3-E1 cells. Biochem. Biophys. Res. Commun. 269 (2), 628–632.

    Google Scholar 

  • Yamamura, J., Morita, Y., Takada, Y. and Kawakami, H. (2006). The fragments of bovine high molecular weight kininogen promote osteoblast proliferation in vitro. J. Biochem. 140 (6), 825–830.

    Google Scholar 

  • Yamniuk, A.P., Burling, H., Vogel, H.J., Yamniuk, A.P., Burling, H. and Vogel, H.J. (2009). Thermodynamic characterization of the interactions between the immunoregulatory proteins osteopontin and lactoferrin. Mol. Immunol. 46 (11–12), 2395–2402.

    Google Scholar 

  • Yang, J. and Yi, Q. (2010). Killing tumor cells through their surface beta(2)-microglobulin or major histocompatibility complex class I molecules. Cancer 116 (7), 1638–1645.

    Google Scholar 

  • Yang, B., Wang, J., Tang, B., Liu, Y., Guo, C., Yang, P., Yu, T., Li, R., Zhao, J., Zhang, L., Dai, Y. and Li, N. (2011). Characterization of bioactive recombinant human lysozyme expressed in milk of cloned transgenic cattle. PLoS ONE [Electronic Resource] 6 (3), e17593.

    Google Scholar 

  • Ye, X.Y., Cheng, K.J. and Ng, T.B. (1999). Isolation and characterization of angiogenin-1 and a novel protein designated lactogenin from bovine milk. Biochem. Biophys. Res. Commun. 263 (1), 187–191.

    Google Scholar 

  • Yonekura, S., Sakamoto, K., Komatsu, T., Hagino, A., Katoh, K. and Obara, Y. (2006). Growth hormone and lactogenic hormones can reduce the leptin mRNA expression in bovine mammary epithelial cells. Domest. Anim. Endocrinol. 31 (1), 88–96.

    Google Scholar 

  • Yoo, Y.C., Watanabe, S., Watanabe, R., Hata, K., Shimazaki, K. and Azuma, I. (1997). Bovine lactoferrin and lactoferricin, a peptide derived from bovine lactoferrin, inhibit tumor metastasis in mice. Jpn. J. Cancer Res. 88 (2), 184–190.

    Google Scholar 

  • Zheng, D.B., Lim, H.M., Pene, J.J. and White, H.B. III. (1988). Chicken riboflavin-binding protein. cDNA sequence and homology with milk folate-binding protein. J. Biol. Chem. 263 (23), 11126–11129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Wynn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wynn, P.C., Sheehy, P.A. (2013). Minor Proteins, Including Growth Factors. In: McSweeney, P., Fox, P. (eds) Advanced Dairy Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4714-6_11

Download citation

Publish with us

Policies and ethics