Skip to main content

Targeting Multiple Myeloma Tumor Angiogenesis: Focus on VEGF

  • Chapter
  • First Online:
Advances in Biology and Therapy of Multiple Myeloma

Abstract

The role of angiogenesis in solid tumors but also in hematologic malignancies including multiple myeloma (MM) is now well established. Research on angiogenesis in general and vascular endothelial growth factor (VEGF), in particular, is a major focus in biomedicine. Derived antiangiogenic therapeutics including the monoclonal anti- VEGF antibody bevazicumab; and the second- generation multitargeted receptor kinase inhibitors (RTKIs) sorafenib, sunitinib, and pazopanib have fundamentally changed treatment strategies in progressed solid tumors over the past decade. In MM, increased microvessel density (MVD) within the bone marrow of MM patients correlates with disease progression and poor prognosis. The therapeutic success of thalidomide and the novel agents bortezomib and lenalidomide in MM treatment is based, at least in part, on their activity against VEGF production and secretion and related effects within the BM microenvironment. Based on these observations, several preclinical and clinical studies are ongoing to evaluate strategies, which either directly or indirectly target VEGF and VEGF receptors and the “vascular niche” in order to improve MM patient outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  2. Ferrara N (2004) Vascular endothelial growth factor as a target for anticancer therapy. Oncologist 9(Suppl 1):2–10

    Article  PubMed  CAS  Google Scholar 

  3. Podar K, Richardson PG, Chauhan D, Anderson KC (2007) Targeting the vascular endothelial growth factor pathway in the treatment of multiple myeloma. Expert Rev Anticancer Ther 7:551–566

    Article  PubMed  CAS  Google Scholar 

  4. Vacca A, Ribatti D, Roncali L, Ranieri G, Serio G, Silvestris F, Dammacco F (1994) Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 87:503–508

    Article  PubMed  CAS  Google Scholar 

  5. Sezer O, Niemoller K, Eucker J, Jakob C, Kaufmann O, Zavrski I, Dietel M, Possinger K (2000) Bone marrow microvessel density is a prognostic factor for survival in patients with multiple myeloma. Ann Hematol 79:574–577

    Article  PubMed  CAS  Google Scholar 

  6. Rajkumar SV, Leong T, Roche PC, Fonseca R, Dispenzieri A, Lacy MQ, Lust JA, Witzig TE, Kyle RA, Gertz MA, Greipp PR (2000) Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res 6:3111–3116

    PubMed  CAS  Google Scholar 

  7. Kumar S, Fonseca R, Dispenzieri A, Lacy MQ, Lust JA, Wellik L, Witzig TE, Gertz MA, Kyle RA, Greipp PR, Rajkumar SV (2003) Prognostic value of angiogenesis in solitary bone plasmacytoma. Blood 101:1715–1717

    Article  PubMed  CAS  Google Scholar 

  8. Kumar S, Litzow MR, Rajkumar SV (2003) Effect of allogeneic stem cell transplantation on bone marrow angiogenesis in chronic myelogenous leukemia. Bone Marrow Transplant 32:1065–1069

    Article  PubMed  CAS  Google Scholar 

  9. Oh HS, Choi JH, Park CK, Jung CW, Lee SI, Park Q, Suh C, Kim SB, Chi HS, Lee JH, Cho EK, Bang SM, Ahn MJ (2002) Comparison of microvessel density before and after peripheral blood stem cell transplantation in multiple myeloma patients and its clinical implications: multicenter trial. Int J Hematol 76:465–470

    Article  PubMed  Google Scholar 

  10. D’Amato RJ, Loughnan MS, Flynn E, Folkman J (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91:4082–4085

    Article  PubMed  Google Scholar 

  11. Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P, Munshi N, Anaissie E, Wilson C, Dhodapkar M, Zeddis J, Barlogie B (1999) Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 341:1565–1571

    Article  PubMed  CAS  Google Scholar 

  12. Kumar S, Gertz MA, Dispenzieri A, Lacy MQ, Wellik LA, Fonseca R, Lust JA, Witzig TE, Kyle RA, Greipp PR, Rajkumar SV (2004) Prognostic value of bone marrow angiogenesis in patients with multiple myeloma undergoing high-dose therapy. Bone Marrow Transplant 34(3):235–239

    Article  PubMed  CAS  Google Scholar 

  13. Bhatti SS, Kumar L, Dinda AK, Dawar R (2006) Prognostic value of bone marrow angiogenesis in multiple myeloma: use of light microscopy as well as computerized image analyzer in the assessment of microvessel density and total vascular area in multiple myeloma and its correlation with various clinical, histological, and laboratory parameters. Am J Hematol 81:649–656

    Article  PubMed  Google Scholar 

  14. Vacca A, Ria R, Ribatti D, Semeraro F, Djonov V, Di Raimondo F, Dammacco F (2003) A paracrine loop in the vascular endothelial growth factor pathway triggers tumor angiogenesis and growth in multiple myeloma. Haematologica 88:176–185

    PubMed  CAS  Google Scholar 

  15. Dankbar B, Padro T, Leo R, Feldmann B, Kropff M, Mesters RM, Serve H, Berdel WE, Kienast J (2000) Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood 95:2630–2636

    PubMed  CAS  Google Scholar 

  16. Vacca A, Ribatti D, Presta M, Minischetti M, Iurlaro M, Ria R, Albini A, Bussolino F, Dammacco F (1999) Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 93:3064–3073

    PubMed  CAS  Google Scholar 

  17. Bisping G, Leo R, Wenning D, Dankbar B, Padro T, Kropff M, Scheffold C, Kroger M, Mesters RM, Berdel WE, Kienast J (2003) Paracrine interactions of basic fibroblast growth factor and interleukin-6 in multiple myeloma. Blood 101:2775–2783

    Article  PubMed  CAS  Google Scholar 

  18. Borset M, Hjorth-Hansen H, Seidel C, Sundan A, Waage A (1996) Hepatocyte growth factor and its receptor c-met in multiple myeloma. Blood 88:3998–4004

    PubMed  CAS  Google Scholar 

  19. Podar K, Chauhan D, Anderson KC (2009) Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia 23:10–24

    Article  PubMed  CAS  Google Scholar 

  20. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998

    Article  PubMed  CAS  Google Scholar 

  21. Rafii S, Lyden D, Benezra R, Hattori K, Heissig B (2002) Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2:826–835

    Article  PubMed  CAS  Google Scholar 

  22. Folberg R, Hendrix MJ, Maniotis AJ (2000) Vasculogenic mimicry and tumor angiogenesis. Am J Pathol 156:361–381

    Article  PubMed  CAS  Google Scholar 

  23. Chang YS, di Tomaso E, McDonald DM, Jones R, Jain RK, Munn LL (2000) Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci USA 97:14608–14613

    Article  PubMed  CAS  Google Scholar 

  24. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248

    Article  PubMed  CAS  Google Scholar 

  25. Hendrix MJ, Seftor EA, Meltzer PS, Gardner LM, Hess AR, Kirschmann DA, Schatteman GC, Seftor RE (2001) Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci USA 98:8018–8023

    Article  PubMed  CAS  Google Scholar 

  26. Folkman J (2001) Can mosaic tumor vessels facilitate molecular diagnosis of cancer? Proc Natl Acad Sci USA 98:398–400

    Article  PubMed  CAS  Google Scholar 

  27. Rafii S (2000) Circulating endothelial precursors: mystery, reality, and promise. J Clin Invest 105:17–19

    Article  PubMed  CAS  Google Scholar 

  28. Dvorak HF, Nagy JA, Dvorak JT, Dvorak AM (1988) Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133:95–109

    PubMed  CAS  Google Scholar 

  29. Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160:985–1000

    Article  PubMed  Google Scholar 

  30. Baish JW, Jain RK (2000) Fractals and cancer. Cancer Res 60:3683–3688

    PubMed  CAS  Google Scholar 

  31. Helmlinger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3:177–182

    Article  PubMed  CAS  Google Scholar 

  32. Vacca A, Ria R, Semeraro F, Merchionne F, Coluccia M, Boccarelli A, Scavelli C, Nico B, Gernone A, Battelli F, Tabilio A, Guidolin D, Petrucci MT, Ribatti D, Dammacco F (2003) Endothelial cells in the bone marrow of patients with multiple myeloma. Blood 102:3340–3348

    Article  PubMed  CAS  Google Scholar 

  33. Gupta D, Treon SP, Shima Y, Hideshima T, Podar K, Tai YT, Lin B, Lentzsch S, Davies FE, Chauhan D, Schlossman RL, Richardson P, Ralph P, Wu L, Payvandi F, Muller G, Stirling DI, Anderson KC (2001) Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 15:1950–1961

    Article  PubMed  CAS  Google Scholar 

  34. Urashima M, Chauhan D, Hatziyanni M, Ogata A, Hollenbaugh D, Aruffo A, Anderson KC (1996) CD40 ligand triggers interleukin-6 mediated B cell differentiation. Leuk Res 20:507–515

    Article  PubMed  CAS  Google Scholar 

  35. Tai YT, Podar K, Mitsiades N, Lin B, Mitsiades C, Gupta D, Akiyama M, Catley L, Hideshima T, Munshi NC, Treon SP, Anderson KC (2003) CD40 induces human multiple myeloma cell migration via phosphatidylinositol 3-kinase/AKT/NF-kappa B signaling. Blood 101:2762–2769

    Article  PubMed  CAS  Google Scholar 

  36. Gagne P, Akalu A, Brooks PC (2004) Challenges facing antiangiogenic therapy for cancer: impact of the tumor extracellular environment. Expert Rev Anticancer Ther 4:129–140

    Article  PubMed  Google Scholar 

  37. Ribatti D, Nico B, Vacca A (2006) Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene 25:4257–4266

    Article  PubMed  CAS  Google Scholar 

  38. Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2:727–739

    Article  PubMed  CAS  Google Scholar 

  39. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  PubMed  CAS  Google Scholar 

  40. Podar K, Anderson KC (2005) The pathophysiological role of VEGF in hematological malignancies: therapeutic implications. Blood 105:1383–1395

    Article  PubMed  CAS  Google Scholar 

  41. Yaccoby S, Barlogie B, Epstein J (1998) Primary myeloma cells growing in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations. Blood 92:2908–2913

    PubMed  CAS  Google Scholar 

  42. Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309

    Article  PubMed  CAS  Google Scholar 

  43. Willett CG, Duda DG, di Tomaso E, Boucher Y, Ancukiewicz M, Sahani DV, Lahdenranta J, Chung DC, Fischman AJ, Lauwers GY, Shellito P, Czito BG, Wong TZ, Paulson E, Poleski M, Vujaskovic Z, Bentley R, Chen HX, Clark JW, Jain RK (2009) Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a ­multidisciplinary phase II study. J Clin Oncol 27:3020–3026

    Article  PubMed  CAS  Google Scholar 

  44. Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400

    Article  PubMed  CAS  Google Scholar 

  45. Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, Boland P, Leidich R, Hylton D, Burova E, Ioffe E, Huang T, Radziejewski C, Bailey K, Fandl JP, Daly T, Wiegand SJ, Yancopoulos GD, Rudge JS (2002) VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA 99:11393–11398

    Article  PubMed  CAS  Google Scholar 

  46. Chu QS (2009) Aflibercept (AVE0005): an alternative strategy for inhibiting tumour angiogenesis by vascular endothelial growth factors. Expert Opin Biol Ther 9:263–271

    Article  PubMed  CAS  Google Scholar 

  47. Kim ES, Serur A, Huang J, Manley CA, McCrudden KW, Frischer JS, Soffer SZ, Ring L, New T, Zabski S, Rudge JS, Holash J, Yancopoulos GD, Kandel JJ, Yamashiro DJ (2002) Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. Proc Natl Acad Sci USA 99:11399–11404

    Article  PubMed  CAS  Google Scholar 

  48. Jayson GC, Zweit J, Jackson A, Mulatero C, Julyan P, Ranson M, Broughton L, Wagstaff J, Hakannson L, Groenewegen G, Bailey J, Smith N, Hastings D, Lawrance J, Haroon H, Ward T, McGown AT, Tang M, Levitt D, Marreaud S, Lehmann FF, Herold M, Zwierzina H (2002) Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst 94:1484–1493

    Article  PubMed  CAS  Google Scholar 

  49. Jayson GC, Parker GJ, Mullamitha S, Valle JW, Saunders M, Broughton L, Lawrance J, Carrington B, Roberts C, Issa B, Buckley DL, Cheung S, Davies K, Watson Y, Zinkewich-Peotti K, Rolfe L, Jackson A (2005) Blockade of platelet-derived growth factor receptor-beta by CDP860, a humanized, PEGylated di-Fab’, leads to fluid accumulation and is associated with increased tumor vascularized volume. J Clin Oncol 23:973–981

    Article  PubMed  CAS  Google Scholar 

  50. Lowinger TB, Riedl B, Dumas J, Smith RA (2002) Design and discovery of small molecules targeting raf-1 kinase. Curr Pharm Des 8:2269–2278

    Article  PubMed  CAS  Google Scholar 

  51. Richly H, Kupsch P, Passage K, Grubert M, Hilger RA, Kredtke S, Voliotis D, Scheulen ME, Seeber S, Strumberg D (2003) A phase I clinical and pharmacokinetic study of the Raf kinase inhibitor (RKI) BAY 43–9006 administered in combination with doxorubicin in patients with solid tumors. Int J Clin Pharmacol Ther 41:620–621

    PubMed  CAS  Google Scholar 

  52. O’Farrell AM, Abrams TJ, Yuen HA, Ngai TJ, Louie SG, Yee KW, Wong LM, Hong W, Lee LB, Town A, Smolich BD, Manning WC, Murray LJ, Heinrich MC, Cherrington JM (2003) SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 101:3597–3605

    Article  PubMed  CAS  Google Scholar 

  53. Motzer RJ, Hudes GR, Curti BD, McDermott DF, Escudier BJ, Negrier S, Duclos B, Moore L, O’Toole T, Boni JP, Dutcher JP (2007) Phase I/II trial of temsirolimus combined with interferon alfa for advanced renal cell carcinoma. J Clin Oncol 25:3958–3964

    Article  PubMed  CAS  Google Scholar 

  54. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Oudard S, Negrier S, Szczylik C, Pili R, Bjarnason GA, Garcia-del-Muro X, Sosman JA, Solska E, Wilding G, Thompson JA, Kim ST, Chen I, Huang X, Figlin RA (2009) Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol 27:3584–3590

    Article  PubMed  CAS  Google Scholar 

  55. George S, Merriam P, Maki RG, Van den Abbeele AD, Yap JT, Akhurst T, Harmon DC, Bhuchar G, O’Mara MM, D’Adamo DR, Morgan J, Schwartz GK, Wagner AJ, Butrynski JE, Demetri GD, Keohan ML (2009) Multicenter phase II trial of sunitinib in the treatment of nongastrointestinal stromal tumor sarcomas. J Clin Oncol 27:3154–3160

    Article  PubMed  CAS  Google Scholar 

  56. Ramakrishnan V, Timm M, Haug JL, Kimlinger TK, Wellik LE, Witzig TE, Rajkumar SV, Adjei AA, Kumar S (2010) Sorafenib, a dual Raf kinase/vascular endothelial growth factor receptor inhibitor has significant anti-myeloma activity and synergizes with common anti-myeloma drugs. Oncogene 29:1190–1202

    Article  PubMed  CAS  Google Scholar 

  57. Wood JM, Bold G, Buchdunger E, Cozens R, Ferrari S, Frei J, Hofmann F, Mestan J, Mett H, O’Reilly T, Persohn E, Rosel J, Schnell C, Stover D, Theuer A, Towbin H, Wenger F, Woods-Cook K, Menrad A, Siemeister G, Schirner M, Thierauch KH, Schneider MR, Drevs J, Martiny-Baron G, Totzke F (2000) PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res 60:2178–2189

    PubMed  CAS  Google Scholar 

  58. Thomas AL, Morgan B, Drevs J, Unger C, Wiedenmann B, Vanhoefer U, Laurent D, Dugan M, Steward WP (2003) Vascular endothelial growth factor receptor tyrosine kinase inhibitors: PTK787/ZK 222584. Semin Oncol 30:32–38

    PubMed  CAS  Google Scholar 

  59. Lin B, Podar K, Gupta D, Tai YT, Li S, Weller E, Hideshima T, Lentzsch S, Davies F, Li C, Weisberg E, Schlossman RL, Richardson PG, Griffin JD, Wood J, Munshi NC, Anderson KC (2002) The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 inhibits growth and migration of multiple myeloma cells in the bone marrow microenvironment. Cancer Res 62:5019–5026

    PubMed  CAS  Google Scholar 

  60. Vij R, Ansstas G, Mosley JC, Bryant G, Hassan A, Amador-Ortiz C, Procknow E (2010) Efficacy and tolerability of PTK787/ZK 222584 in a phase II study of post-transplant maintenance therapy in patients with multiple myeloma following high-dose chemotherapy and autologous stem cell transplant. Leuk Lymphoma 51:1577–1579

    Article  PubMed  CAS  Google Scholar 

  61. Kumar R, Knick VB, Rudolph SK, Johnson JH, Crosby RM, Hopper TM, Miller CG, Harrington LE, Onori JA, Mullin RJ, Gilmer TM, Truesdale AT, Epperly AH, Bolor A, Cheung M, Stafford JA, Luttrell DK (2005). GW786034: a pan-inhibitor of VEGF receptors with potent anti-tumor and anti-angiogenic activity. In: AACR-NCI-EORTC international conference – molecular targets and cancer therapeutics, pp 5859

    Google Scholar 

  62. GlaxoSmithKline Pazopanib Hydrochloride (2006) Pharmacop Forum 32: 217

    Google Scholar 

  63. Hurwitz HI, Dowlati A, Saini S, Savage S, Suttle AB, Gibson DM, Hodge JP, Merkle EM, Pandite L (2009) Phase I trial of pazopanib in patients with advanced cancer. Clin Cancer Res 15:4220–4227

    Article  PubMed  CAS  Google Scholar 

  64. Sternberg CN, Davis ID, Mardiak J, Szczylik C, Lee E, Wagstaff J, Barrios CH, Salman P, Gladkov OA, Kavina A, Zarba JJ, Chen M, McCann L, Pandite L, Roychowdhury DF, Hawkins RE (2010) Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol 28:1061–1068

    Article  PubMed  CAS  Google Scholar 

  65. Podar K, Tonon G, Sattler M, Tai YT, Legouill S, Yasui H, Ishitsuka K, Kumar S, Kumar R, Pandite LN, Hideshima T, Chauhan D, Anderson KC (2006) The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc Natl Acad Sci USA 103(51):19478–19483

    Article  PubMed  CAS  Google Scholar 

  66. Prince HM, Honemann D, Spencer A, Rizzieri DA, Stadtmauer EA, Roberts AW, Bahlis N, Tricot G, Bell B, Demarini DJ, Benjamin Suttle A, Baker KL, Pandite LN (2009) Vascular endothelial growth factor inhibition is not an effective therapeutic strategy for relapsed or refractory multiple myeloma: a phase 2 study of pazopanib (GW786034). Blood 113:4819–4820

    Article  PubMed  CAS  Google Scholar 

  67. O’Farrell AM, Yuen HA, Smolich B, Hannah AL, Louie SG, Hong W, Stopeck AT, Silverman LR, Lancet JE, Karp JE, Albitar M, Cherrington JM, Giles FJ (2004) Effects of SU5416, a small molecule tyrosine kinase receptor inhibitor, on FLT3 expression and phosphorylation in patients with refractory acute myeloid leukemia. Leuk Res 28:679–689

    Article  PubMed  CAS  Google Scholar 

  68. Giles FJ, Stopeck AT, Silverman LR, Lancet JE, Cooper MA, Hannah AL, Cherrington JM, O’Farrell AM, Yuen HA, Louie SG, Hong W, Cortes JE, Verstovsek S, Albitar M, O’Brien SM, Kantarjian HM, Karp JE (2003) SU5416, a small molecule tyrosine kinase receptor inhibitor, has biologic activity in patients with refractory acute myeloid leukemia or myelodysplastic syndromes. Blood 102:795–801

    Article  PubMed  CAS  Google Scholar 

  69. Fiedler W, Mesters R, Tinnefeld H, Loges S, Staib P, Duhrsen U, Flasshove M, Ottmann OG, Jung W, Cavalli F, Kuse R, Thomalla J, Serve H, O’Farrell AM, Jacobs M, Brega NM, Scigalla P, Hossfeld DK, Berdel WE (2003) A phase 2 clinical study of SU5416 in patients with refractory acute myeloid leukemia. Blood 102:2763–2767

    Article  PubMed  CAS  Google Scholar 

  70. Beebe JS, Jani JP, Knauth E, Goodwin P, Higdon C, Rossi AM, Emerson E, Finkelstein M, Floyd E, Harriman S, Atherton J, Hillerman S, Soderstrom C, Kou K, Gant T, Noe MC, Foster B, Rastinejad F, Marx MA, Schaeffer T, Whalen PM, Roberts WG (2003) Pharmacological characterization of CP-547,632, a novel vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for cancer therapy. Cancer Res 63:7301–7309

    PubMed  CAS  Google Scholar 

  71. Bates D (2003) ZD-6474 AstraZeneca. Curr Opin Investig Drugs 4:1468–1472

    PubMed  CAS  Google Scholar 

  72. Zangari M, Anaissie E, Stopeck A, Morimoto A, Tan N, Lancet J, Cooper M, Hannah A, Garcia-Manero G, Faderl S, Kantarjian H, Cherrington J, Albitar M, Giles FJ (2004) Phase II study of SU5416, a small molecule vascular endothelial growth factor tyrosine kinase receptor inhibitor, in patients with refractory multiple myeloma. Clin Cancer Res 10:88–95

    Article  PubMed  CAS  Google Scholar 

  73. Morabito A, Piccirillo MC, Falasconi F, De Feo G, Del Giudice A, Bryce J, Di Maio M, De Maio E, Normanno N, Perrone F (2009) Vandetanib (ZD6474), a dual inhibitor of vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) tyrosine kinases: current status and future directions. Oncologist 14:378–390

    Article  PubMed  CAS  Google Scholar 

  74. Mazumder A, Jagannath S (2006) Thalidomide and lenalidomide in multiple myeloma. Best Pract Res Clin Haematol 19:769–780

    Article  PubMed  CAS  Google Scholar 

  75. Bartlett JB, Dredge K, Dalgleish AG (2004) The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer 4:314–322

    Article  PubMed  CAS  Google Scholar 

  76. Richardson P, Mitsiades C, Laubach J, Schlossman R, Ghobrial I, Hideshima T, Munshi N, Anderson K (2010) Lenalidomide in multiple myeloma: an evidence-based review of its role in therapy. Core Evid 4:215–245

    PubMed  Google Scholar 

  77. Attal M, Cristini C, Marit G, Caillot D, Facon T, Hullin C, Moreau P, Mathiot C, Avet-Loiseau H, Harousseau J, Myelome I.F.d (2010) Lenalidomide maintenance after transplantation for myeloma. J Clin Oncol 28: 15s (suppl; abstr. 8018)

    Google Scholar 

  78. McCarthy P, Owzar K, Anderson K, Hofmeister C, Hassoun H, Hurd D, Stadtmauer E, Giralt S, Hars V, Linker C, CALGB E.a.B.-C (2010) Phase III intergroup study of lenalidomide versus placebo maintenance therapy following single autologous stem cell transplant (ASCT) for multiple myeloma (MM): CALGB 100104. Clin Oncol 28: 15s (suppl; abstr 8017)

    Google Scholar 

  79. Palumbo A, Falco P, Benevolo G et al. (2010) A multicenter, open label study of oral lenalidomide and prednisone (RP) followed by oral lenalidomide, melphalan and prednisone (MPR) and oral lenalidomide maintenance in newly diagnosed elderly multiple myeloma patients. Blood 116:1940. abstract

    Google Scholar 

  80. Hideshima T, Chauhan D, Shima Y, Raje N, Davies FE, Tai YT, Treon SP, Lin B, Schlossman RL, Richardson P, Muller G, Stirling DI, Anderson KC (2000) Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 96:2943–2950

    PubMed  CAS  Google Scholar 

  81. D’Amato RJ, Lentzsch S, Anderson KC, Rogers MS (2001) Mechanism of action of thalidomide and 3-aminothalidomide in multiple myeloma. Semin Oncol 28:597–601

    Article  PubMed  CAS  Google Scholar 

  82. Yabu T, Tomimoto H, Taguchi Y, Yamaoka S, Igarashi Y, Okazaki T (2005) Thalidomide-induced anti-angiogenic action is mediated by ceramide through depletion of VEGF receptors, and antagonized by sphingosine-1-phosphate. Blood 106(1):125–134

    Article  PubMed  CAS  Google Scholar 

  83. Schey SA, Fields P, Bartlett JB, Clarke IA, Ashan G, Knight RD, Streetly M, Dalgleish AG (2004) Phase I study of an immunomodulatory thalidomide analog, CC-4047, in relapsed or refractory multiple myeloma. J Clin Oncol 22:3269–3276

    Article  PubMed  CAS  Google Scholar 

  84. Kane RC, Bross PF, Farrell AT, Pazdur R (2003) Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist 8:508–513

    Article  PubMed  Google Scholar 

  85. Nawrocki ST, Bruns CJ, Harbison MT, Bold RJ, Gotsch BS, Abbruzzese JL, Elliott P, Adams J, McConkey DJ (2002) Effects of the proteasome inhibitor PS-341 on apoptosis and angiogenesis in orthotopic human pancreatic tumor xenografts. Mol Cancer Ther 1:1243–1253

    PubMed  CAS  Google Scholar 

  86. Oikawa T, Sasaki T, Nakamura M, Shimamura M, Tanahashi N, Omura S, Tanaka K (1998) The proteasome is involved in angiogenesis. Biochem Biophys Res Commun 246:243–248

    Article  PubMed  CAS  Google Scholar 

  87. LeBlanc R, Catley LP, Hideshima T, Lentzsch S, Mitsiades CS, Mitsiades N, Neuberg D, Goloubeva O, Pien CS, Adams J, Gupta D, Richardson PG, Munshi NC, Anderson KC (2002) Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 62:4996–5000

    PubMed  CAS  Google Scholar 

  88. Podar K, Shringarpure R, Tai YT, Simoncini M, Sattler M, Ishitsuka K, Richardson PG, Hideshima T, Chauhan D, Anderson KC (2004) Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Res 64:7500–7506

    Article  PubMed  CAS  Google Scholar 

  89. Tai YT, Podar K, Gupta D, Lin B, Young G, Akiyama M, Anderson KC (2002) CD40 activation induces p53-dependent vascular endothelial growth factor secretion in human multiple myeloma cells. Blood 99:1419–1427

    Article  PubMed  CAS  Google Scholar 

  90. Tai YT, Catley LP, Mitsiades CS, Burger R, Podar K, Shringpaure R, Hideshima T, Chauhan D, Hamasaki M, Ishitsuka K, Richardson P, Treon SP, Munshi NC, Anderson KC (2004) Mechanisms by which SGN-40, a humanized anti-CD40 antibody, induces cytotoxicity in human multiple myeloma cells: clinical implications. Cancer Res 64:2846–2852

    Article  PubMed  CAS  Google Scholar 

  91. Graff JR, McNulty AM, Hanna KR, Konicek BW, Lynch RL, Bailey SN, Banks C, Capen A, Goode R, Lewis JE, Sams L, Huss KL, Campbell RM, Iversen PW, Neubauer BL, Brown TJ, Musib L, Geeganage S, Thornton D (2005) The protein kinase Cbeta-selective inhibitor, Enzastaurin (LY317615.HCl), suppresses signaling through the AKT pathway, induces apoptosis, and suppresses growth of human colon cancer and glioblastoma xenografts. Cancer Res 65:7462–7469

    Article  PubMed  CAS  Google Scholar 

  92. Keyes K, Cox K, Treadway P, Mann L, Shih C, Faul MM, Teicher BA (2002) An in vitro tumor model: analysis of angiogenic factor expression after chemotherapy. Cancer Res 62:5597–5602

    PubMed  CAS  Google Scholar 

  93. Keyes KA, Mann L, Sherman M, Galbreath E, Schirtzinger L, Ballard D, Chen YF, Iversen P, Teicher BA (2004) LY317615 decreases plasma VEGF levels in human tumor xenograft-bearing mice. Cancer Chemother Pharmacol 53:133–140

    Article  PubMed  CAS  Google Scholar 

  94. Herbst RS (2002) Targeted therapy using novel agents in the treatment of non-small-cell lung cancer. Clin Lung Cancer 3(Suppl 1):S30–S38

    Article  PubMed  Google Scholar 

  95. Podar K, Raab MS, Zhang J, McMillin D, Breitkreutz I, Tai YT, Lin BK, Munshi N, Hideshima T, Chauhan D, Anderson KC (2007) Targeting PKC in multiple myeloma: in vitro and in vivo effects of the novel, orally available small-molecule inhibitor enzastaurin (LY317615.HCl). Blood 109:1669–1677

    Article  PubMed  CAS  Google Scholar 

  96. MacDonald TJ, Taga T, Shimada H, Tabrizi P, Zlokovic BV, Cheresh DA, Laug WE (2001) Preferential susceptibility of brain tumors to the antiangiogenic effects of an alpha(v) integrin antagonist. Neurosurgery 48:151–157

    PubMed  CAS  Google Scholar 

  97. Burke PA, DeNardo SJ, Miers LA, Lamborn KR, Matzku S, DeNardo GL (2002) Cilengitide targeting of alpha(v)beta(3) integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res 62:4263–4272

    PubMed  CAS  Google Scholar 

  98. Raguse JD, Gath HJ, Bier J, Riess H, Oettle H (2004) Cilengitide (EMD 121974) arrests the growth of a heavily pretreated highly vascularised head and neck tumour. Oral Oncol 40:228–230

    Article  PubMed  CAS  Google Scholar 

  99. Nisato RE, Tille JC, Jonczyk A, Goodman SL, Pepper MS (2003) alphav beta 3 and alphav beta 5 integrin antagonists inhibit angiogenesis in vitro. Angiogenesis 6:105–119

    Article  PubMed  CAS  Google Scholar 

  100. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    Article  PubMed  CAS  Google Scholar 

  101. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R, Johnson DH (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550

    Article  PubMed  CAS  Google Scholar 

  102. Kerbel RS (2006) Antiangiogenic therapy: a universal chemosensitization strategy for cancer? Science 312:1171–1175

    Article  PubMed  CAS  Google Scholar 

  103. Hanahan D, Bergers G, Bergsland E (2000) Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest 105:1045–1047

    Article  PubMed  CAS  Google Scholar 

  104. Kerbel RS, Kamen BA (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4:423–436

    Article  PubMed  CAS  Google Scholar 

  105. Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O’Reilly MS, Folkman J (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60:1878–1886

    PubMed  CAS  Google Scholar 

  106. Gasparini G (2001) Metronomic scheduling: the future of chemotherapy? Lancet Oncol 2:733–740

    Article  PubMed  CAS  Google Scholar 

  107. Kamen BA, Rubin E, Aisner J, Glatstein E (2000) High-time chemotherapy or high time for low dose. J Clin Oncol 18:2935–2937

    PubMed  CAS  Google Scholar 

  108. Kerbel RS, Klement G, Pritchard KI, Kamen B (2002) Continuous low-dose anti-angiogenic/metronomic chemotherapy: from the research laboratory into the oncology clinic. Ann Oncol 13:12–15

    Article  PubMed  CAS  Google Scholar 

  109. Pietras K, Hanahan D (2005) A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J Clin Oncol 23:939–952

    Article  PubMed  CAS  Google Scholar 

  110. Klasa RJ, List AF, Cheson BD (2001) Rational approaches to design of therapeutics targeting molecular markers. Am Soc Hematol Educ Program 2001(1):443–462

    Article  Google Scholar 

  111. Grothey A, Galanis E (2009) Targeting angiogenesis: progress with anti-VEGF treatment with large molecules. Nat Rev Clin Oncol 6:507–518

    Article  PubMed  CAS  Google Scholar 

  112. Ivy SP, Wick JY, Kaufman BM (2009) An overview of small-molecule inhibitors of VEGFR signaling. Nat Rev Clin Oncol 6:569–579

    Article  PubMed  CAS  Google Scholar 

  113. Giuliani N, Colla S, Lazzaretti M, Sala R, Roti G, Mancini C, Bonomini S, Lunghi P, Hojden M, Genestreti G, Svaldi M, Coser P, Fattori PP, Sammarelli G, Gazzola GC, Bataille R, Almici C, Caramatti C, Mangoni L, Rizzoli V (2003) Proangiogenic properties of human myeloma cells: production of angiopoietin-1 and its potential relationship to myeloma-induced angiogenesis. Blood 102:638–645

    Article  PubMed  CAS  Google Scholar 

  114. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    Article  PubMed  CAS  Google Scholar 

  115. Greenberg DA, Jin K (2005) From angiogenesis to neuropathology. Nature 438:954–959

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Podar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Podar, K., Anderson, K.C. (2013). Targeting Multiple Myeloma Tumor Angiogenesis: Focus on VEGF. In: Munshi, N., Anderson, K. (eds) Advances in Biology and Therapy of Multiple Myeloma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4666-8_15

Download citation

Publish with us

Policies and ethics