Skip to main content

Role of Nematode-Trapping Fungi for Crop Improvement under Adverse Conditions

  • Chapter
  • First Online:
Crop Improvement Under Adverse Conditions

Abstract

Phytonematodes cause significant economic loss to a wide variety of crops by inducing biotic stress to the plant. They cause dramatic changes in the morphology and physiology of the host root system. The damage is difficult to recognize at first sight because biotic stress first begins in the rhizospheric soil and its symptoms resemble as stress caused by deficiency of water and nutrients. Nematode-trapping fungi show very good potential for biological control of plant parasitic nematodes due to formation of trapping structures. Even fungistasis acts as a boon for these fungi where it forms trapping structures directly from the spore i.e., conidial trap (CT), having similar ability to capture and kill phytonematodes as trapping structures formed on normal hyphae. Initial results of these nematode-trapping fungi as good biocontrol agents, were erratic and discouraging because of less understanding of the biology and failure of mechanism of augmentation in the soil. In the last three decades, commercial products of these nematode-trapping fungi have been developed and have shown promising results in the control of phytonematodes. The other advantages of using some nematode-trapping fungi are its mycoparasitic behavior to control some soil-borne diseases and as root endophytes which show resistance against biotic stresses caused by phytonematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahman JB, Johansson T, Olsson M, Punt PJ, Van Den Hondel C, Tunlid A (2002) Improving the pathogenicity of a nematode trapping fungus by genetic engineering of B. subtilis with nematotoxic activity. Appl Environ microbial 68:3408–3415

    Article  CAS  Google Scholar 

  • Ahren D, Ursing BM, Tunlid A (1998) Phylogeny of nematode-trapping fungi based on 18r DNA sequences. FEMS Microbiol Lett 158:179–184

    Article  PubMed  CAS  Google Scholar 

  • Ahren D, Faedo M, Rajashekar B, Tunlid A (2004) Low genetic diversity among isolates of the nematode trapping fungus Duddingtonia flagrans: evidence for recent worldwide dispersion from a single common ancestor. Mycol Res 108:1205–1214

    Article  PubMed  CAS  Google Scholar 

  • Ashour EH, Mostafa FAM (1999) Effect of pollution with certain heavy metals on the growth of the nematophagous fungus, Arthrobotrys oligospora, trap formation, root-knot nematode infection and enzyme production. Pak J Biol Sci 2:515–522

    Article  Google Scholar 

  • Barron GL (1977) The nematode-destroying fungi. University of Guelph, Ontario. Lancaster, Pennsylvania: Lancaster Press. Top Mycobiol 1:1–140

    Google Scholar 

  • Bordallo JJ, Lopez-Llorca LV, Jansson H-B, Salinas J, Persmark L, Asensio L (2002) Effect of egg-parasitic and nematode trapping fungi on plant roots. New Phytol 154:491–499

    Article  Google Scholar 

  • Cayrol JC, Frankowski JP, Laniece A, D’Harde-mare G, Talon JP (1978) Contre les nematodes en champigonniere. Mise an point d’une methode de lutte biologique a l’aide d’un Hyphomycetes predateur: Arthrobotrys robusta souche antipolis’ (Royal 300). Pepinieristes, Horticulteurs, Maraichers, Revue Horticole 184:23–40

    Google Scholar 

  • Cayrol JC., Frankowski OP (1979) Une methode de lutte biologique contre les nematodes a galles desacines appartenant au genre Meloidogyne. Pepinieristes. Holticulteurs, Maraichers, Revue Horticole 193:15–23

    Google Scholar 

  • Chet I, Herman GER, Baker R (1981) Trichoderma hamatum: its hyphae interaction with Rhizoctonia solani and Pythium spp. Microb Ecol 7:29–38

    Article  Google Scholar 

  • Cooke RC (1964) Ecological characteristics of nematode-trapping hyphomycetes—II. Germination of conidia in soil. Ann Appl Biol 54:375–379

    Article  Google Scholar 

  • Dackman C, Nordbring-Hertz B (1992) Conidial traps—A new survival structure of the nematode trapping fungus Arthrobotrys oligospora. Mycol Res 96:194–198

    Article  Google Scholar 

  • Dong JY, Zhao ZX, Cai L, Liu SQ, Zhang HR, Duan M, Zhang KQ (2004) Nematicidal effect of freshwater fungal cultures against the pine-nematode, Bursaphelenchus xylophilus. Fung Divers 15:125–135

    Google Scholar 

  • Drechsler C (1937) Some hyphomycetes that prey on free-living terricolous nematodes. Mycologia 29:447–552

    Article  Google Scholar 

  • Duddington CL (1951) The ecology of predacious fungi. I. Preliminary survey. Trans Br Mycol Soc 34:322–331

    Google Scholar 

  • Duddington CL (1962) Predaceaus fungi and control of eelworms. In: Carthy JD, Duddington CL (eds) Viewpoints in Biology, Vol.1. Butterworth, London, pp 12

    Google Scholar 

  • Duponnois R, Mateille T, Gueye M (1995) Biological characteristics and effects of two strains of Arthrobotrys oligospora from Senegal on Meloidogyne species parasitizing tomato plants. Biocontrol Sci Technol 5:517–525

    Article  Google Scholar 

  • Glockling SL, Dick MW (1994) Dactylella megalobrocha, a new species of nematophagous fungus with constricting ring. Mycol Res 98:845–853

    Article  Google Scholar 

  • Gueye M, Duponnois R, Samb PI, Mateille T (1997) Study on 3 strains of Arthrobotrys oligospora: biological characterization and effects on Meloidogyne mayaguensis parasitic on tomato in Senegal. Tropicultura 15(3):109–115

    Google Scholar 

  • Haard K (1968) Taxonomic studies on the genus Arthrobotrys corda. Mycologia 60:1140–1159

    Article  Google Scholar 

  • Hagedorn G, Scholler M (1999) A reevaluation of predatory orbiliaceous fungi. I. Phylogenetic analysis using rDNA sequence data. Sydowia 51:27–48

    Google Scholar 

  • Heintz EC (1978) Assesing the predacity of nematode trapping fungi in vitro. Mycologia 70:1086–1100

    Article  Google Scholar 

  • Jaffee BA (2002) Soil cages for studying how organic amendments affect nematode trapping fungi. Appl Soil Ecol 21:1–9

    Article  Google Scholar 

  • Jaffee BA, Ferries H, Scow KM (1998) Nematode trapping fungi in organic and conventional cropping system. Ecol Population Biol 88(4):344–350

    CAS  Google Scholar 

  • Jaffee BA, Strong DR (2005) Strong bottom-up and weak top-down effects in soil: Nematode parasitized insects and nematode trapping fungi. Soil Biol Biochem 37:1011–1021

    Article  CAS  Google Scholar 

  • Jansson H-B, Lopez-Llocra LV (2004) Control of nematodes by fungi. In: Arora DK (ed) Fungal Biotechnology in agriculture, food, and environment application. Dekker. New York, pp 205–215

    Google Scholar 

  • Jeffries P (1997) In: Wicklow DT, Soderstorm DE (eds) Mycoparasitism. In the mycota vol 4. Environmental and Microbial relationship. Springers Verlag, New York, pp L149–L164

    Google Scholar 

  • Kano S, Aimi R, Masumoto A, Kitamoto Y, Morinaga T (2004) Physiology and molecular characteristics of a pinewilt nematode-trapping fungus, Monacrosporium megalosporum. Curr Microbiol 49:158–164

    Article  PubMed  CAS  Google Scholar 

  • Kerry BR (1987) Biological control .In: Brown RH, Kerry BR (eds) 92 Biological control of nematodes: Prospects and opportunities Principles and practice of nematode control in crops. Academic Press, Sydney, pp 233–263

    Google Scholar 

  • Kumar D, Singh KP (2006) Assessment of predacity of Arthrobotrys dactyloides for biological control of root knot disease of tomato. J Phytopathol 154:1–5

    Article  Google Scholar 

  • Leinhos GME, Bauchenauer H (1992) Hyperparasitism of selected fungi on rust fungi on cereals. Z Pflazenschutz 99:482–498

    Google Scholar 

  • Li SD, Zhang YH, Miao ZQ, Liu XZ (2001) Nematode trapping hyphomycetes as mycoparasites on sclerotia of Sclerotinia sclerotiorum in soil. Phytopathology 91:555

    Google Scholar 

  • Li Y, Hyde KD, Jeewon R, Cai L, Vijaykrishna D, Zhang KQ (2005) Phylogenetics and evolution of nematode-trapping fungi estimated from nuclear & protein coding genes. Mycologia (97:1034–1046)

    Google Scholar 

  • Linford MB (1937) Stimulated activity of natural enemies of nematodes. Science 85:123–124

    Article  PubMed  CAS  Google Scholar 

  • Liou GY, Tzean SS (1997) Phylogeny of the genus Arthrobotrys and allied nematode-trapping fungi based on rDNA sequences. Mycologia 89:876–884

    Article  CAS  Google Scholar 

  • Liu XF, Zhang KQ (2003) Dactylella shizishanna sp. nov., from Shizi Mountain, China. Fung Divers 14:103–107

    Google Scholar 

  • Liu XZ, Zhang KQ (1994) Nematode-trapping species of Monacrosporium with special reference to two new species. Mycol Res 98:862–868

    Article  Google Scholar 

  • Mankau R (1980) Biocontrol: Fungi as nematode control agents. J Nematol 12(4):244–252

    PubMed  CAS  Google Scholar 

  • Matskevich NV, Kosovets VS, Udalova VB, Teplyakova, TV (1978) The possibility of using nematophagus fungi in the control of some plant nematodes under enclosed conditions. Biologicheskii- metod- vreditelyamii- bolezyami- rastenii- Nauchnye- Trudy- Vaskhnil 135–150

    Google Scholar 

  • Nordmeyer D (1992) The search for novel nematicidal compounds. In: Gommes FJ, Mass WTH (eds) Nematology from molecules to ecosystems. European Society of Nematologists. Invergowrie, Dundee, pp 281–293

    Google Scholar 

  • Nordbring-Hertz B, Jansson HB, Tunlid A (2006) Nematophagous fungi. In: Encyclopedia of Life Sciences. John Wiley, USA

    Google Scholar 

  • Olsson S, Persson Y (1994) Transfer of Phosphorous from Rhizoctonia solani to mycoparasute Arthrobotrys oligospora. Mycological Research 98:1065–1068

    Article  Google Scholar 

  • Persmark L, Jansson HB (1997) Nematophagous fungi in the rhizosphere of agricultural crops. FEMS Microbial Ecol 22:303–312

    Article  CAS  Google Scholar 

  • Pfister DH (1997) Castor, Pollux and life histories of fungi. Mycologia 89:1–23

    Article  Google Scholar 

  • Sasser JN (1989) Plant parasitic nematodes, farmer’s hidden enemy. Deptt Pl Prot. North Carolina State Uni, USA, p 13

    Google Scholar 

  • Sayre RM (1986) Pathogens for the biological control of nematodes. Crop Prot 5(4):268–276

    Article  Google Scholar 

  • Sayre RM, Walter DE (1991) Factors affecting the efficacy of natural enemies of nematodes. Ann Rev Phytopathol 29:149–166

    Article  Google Scholar 

  • Scholler M, Hagedorn G, Rubner A (1999) A reevalution of predatory orbiliaceous fungi. II. A new generic concept. Sydowia 51:89–113

    Google Scholar 

  • Schans J (1991) Plant Cell Environ 14(7):707–712

    Google Scholar 

  • Sikora RA (1992) Management of the antagonistic potential in agricultural ecosystems for the biological control of plant-parasitic nematodes. Ann Rev Phytopathol 30:245–270

    Article  Google Scholar 

  • Sikora RA, Schafer K, Dobabat AA (2007) Modes of action associated with microbially induced in planta suppression of plant parasitic nematods. Australasian Plant Pathology 36:124–134

    Google Scholar 

  • Singh RK, Gupta RC, Kumar Niranjan, Singh KP (2006) Effect of mass culture of Arthrobotrys oligospora for the control of root knot in rice (Oryza sativa). Indian J Plant Pathol 24(182):32–35

    Google Scholar 

  • Stirling GR, Mani A (1995) The activity of nematode-trapping fungi following their encapsulation in alginate. Nematologica

    Google Scholar 

  • Stirling GR, Smith LJ (1998a) Field test of formulated products containing either Verticillium chlamydosporium or Arthrobotrys dactyloides for biological control of root knot nematode. Biol Control 11:231–239

    Article  Google Scholar 

  • Stirling GR, Smith LJ, Licastro KA, Eden LM (1998b) Control of root knot nematode with formulation of nematode trapping fungus Arthrobotrys dactyloides. Biol Control 11:224–230

    Article  Google Scholar 

  • Tzean SS, Estey RH (1978) Nematode trapping fungi as mycoparasites. Phytopatology 68:1266–1270

    Article  Google Scholar 

  • Zhang KQ, Liu XZ, Cao L (1996a) A review of Dactylella and a new species. Mycosystema 7:111–118

    Google Scholar 

  • Zhang KQ, Liu XZ, Cao L (1996b) Nematophagous species of Monacrosporium from China. Mycol Res 100:274–276

    Article  Google Scholar 

  • Zinov’eva SV, Vasyukora NI, Ozeretskovskaya OL (2004) Biochemical aspects of plant interactions with phytoparasitic nematods: A Rev Appl Biochem Microbiol 40(2):111–119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Singh, R., Trivedi, D., Srivastava, A. (2013). Role of Nematode-Trapping Fungi for Crop Improvement under Adverse Conditions. In: Tuteja, N., Gill, S. (eds) Crop Improvement Under Adverse Conditions. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4633-0_12

Download citation

Publish with us

Policies and ethics