Skip to main content

Organismal Biology, Molecular Systematics, and Phylogenetic Reconstruction

  • Chapter
  • First Online:
Leaping Ahead

Part of the book series: Developments in Primatology: Progress and Prospects ((DIPR))

  • 854 Accesses

Abstract

DNA sequence data enjoys the singular position of being the arbiter of phylogenetic relationships; yet the justifications for this endeavor—the notions of continual molecular change, and that the degree of overall similarity reflects recency of divergence from a common, constantly changing ancestral sequence—was based on studies of bacteria not multicellular organisms. This is important because ca. 98% of a bacterial genome codes for metabolically active proteins, while a similar proportion in the metazoan genome is dedicated to the regulation of development. Consequently, random mutation in the metazoan genome would likely lead to organismal failure, not survival, which suggests that sequence similarity in this region reflects primitive retention (= nonchange). Further, since metazoan mtDNA and the ca. 2% coding region are involved in metabolic processes, demonstration of taxic similarity in these nucleotide sequences is likely to reflect similar physiological adaptation, not evolutionary history.

Resume

Les données génétiques moléculaires bénéficient d’une singulière place d’arbitre des relations phylogénétiques ; et pourtant la justification de cette ambition—la notion de changement moléculaire continu, et celle selon laquelle le degré de similarité reflète l’ancienneté de la divergence d’une séquence ancestrale qui change continuellement—se fonde sur l’étude des bactéries, et non celle des organismes multicellulaires. Ce fait est important parce que 98% du génome bactérien code pour des protéines métaboliquement actives, alors que dans le génome des Métazoaires, une proportion similaire est dédiée à la régulation du développement. Ainsi, chez les Métazoaires, les mutations sont le plus souvent fatales, se qui suggère que les séquences similaires reflètent des rétentions primitives, et non des changements. De plus, puisque l’ADN mitochondrial et 2% de l’ADN nucléaire sont impliqués dans le métabolisme, les séquences de nucléotides similaires reflètent des adaptations physiologiques, plutôt que l’histoire évolutive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311:796–800

    Article  PubMed  CAS  Google Scholar 

  • Duboule D, Dollé P (1989) The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J 8:1497–1505

    PubMed  CAS  Google Scholar 

  • Eisen JA (2000) Assessing evolutionary relationships among microbes from whole-genome analysis. Curr Opin Microbiol 3:475–480

    Article  PubMed  CAS  Google Scholar 

  • Eldredge N, Cracraft J (1980) Phylogenetic patterns and the evolutionary process: method and theory in comparative biology. Columbia University Press, New York

    Google Scholar 

  • Friedman M (2008) The evolutionary origin of flatfish asymmetry. Nature 454:209–212

    Article  PubMed  CAS  Google Scholar 

  • Gerhart J, Kirschner M (1997) Cells, embryos, and evolution: toward a cellular and developmental understanding of phenotypic variation and evolutionary adaptability. Blackwell, Malden, MA

    Google Scholar 

  • Goff SA et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt RB (1940) The material basis of evolution. Yale University Press, New Haven

    Google Scholar 

  • Hennig W (1966) Phylogenetic systematics. University of Chicago Press, Chicago

    Google Scholar 

  • Hulsey CD, Fraser GJ, Streelman JT (2006) Evolution and development of complex biomechanical systems: 300 million years of fish jaws. Zebrafish 2:243–257

    Article  Google Scholar 

  • Jacob F, Monod J (1959) Genes of structure and genes of regulation in the biosynthesis of proteins. C R Hebd Seances Acad Sci 249:1282–1284

    PubMed  CAS  Google Scholar 

  • Kitts DB (1977) Genes of structure and genes of regulation in the biosynthesis of proteins. Syst Zool 26:185–194

    Article  Google Scholar 

  • Lenski RE, Travisano M (1994) Dynamics of adaptation and diversification: a 10,000-generation of experiment with bacterial populations. Proc Natl Acad Sci USA 91:6808–6814

    Article  PubMed  CAS  Google Scholar 

  • Lolle SJ, Victor JL, Young JM, Pruitt RE (2005) Genome-wide non-Mendelian inheritance of extra-genomic information in Arabidopsis. Nature 434:505–509

    Article  PubMed  CAS  Google Scholar 

  • Maresca B, Schwartz JH (2006) Sudden origins: a general mechanism of evolution based on stress protein concentration and rapid environmental change. Anat Rec B New Anat 2898:38–46

    Google Scholar 

  • Nuttall GHF (1904) Blood immunity and blood relationship. Cambridge University Press, Cambridge

    Google Scholar 

  • Popper KR (1962) Conjectures and refutations: the growth of scientific knowledge. Routledge and Kegan Paul, London

    Google Scholar 

  • Popper KR (1968) The logic of scientific discovery. Harper Torchbooks, New York

    Google Scholar 

  • Rassoulzadegan M, Grandjean V, Gounon P, Vincent S, Gillot I, Cuzin F (2006) RNA-mediated non-Mendelian inheritance of an epigenetic change in the mouse. Nature 441:469–474

    Article  PubMed  CAS  Google Scholar 

  • Ronshaugen M, McGinnis N, McGinnis SW (2002) Hox protein mutation and macroevolution of the insect body plan. Nature 415:914–917

    Article  PubMed  Google Scholar 

  • Schindewolf O (1993) Basic questions in paleontology: geologic time, organic evolution, and biological systematics (trans: Schaefer J). University of Chicago Press, Chicago

    Google Scholar 

  • Schwartz JH (2005) The Red Ape: Orangutans and Human Origins. Westview Press, Boulder, CO

    Google Scholar 

  • Schwartz JH (2008) Cladistics. In: Regal B (ed) Icons of evolution. Greenwood Press, Westport, CT, pp 517–544

    Google Scholar 

  • Schwartz JH, Maresca B (2006) Do molecular clocks run at all? A critique of molecular systematics. Biol Theory 1:1–15

    Article  Google Scholar 

  • Stern CD, Charité J, Deschamps J, Duboule D, Durston AJ, Kmita M, Nicolas J-F, Palmeirem I, Smith JC, Wolpert L (2006) Head-tail patterning of the vertebrate embryo: one, two or many unresolved problems? Int J Dev Biol 50:3–15

    Article  PubMed  CAS  Google Scholar 

  • Stotz K (2006) With ‘genes’ like that, who needs an environment? Postgenomics’s argument for the ‘Ontogeny of Information’. Philos Sci 73:905–917

    Article  Google Scholar 

  • Waddington CH (1940) Organisers and genes. Cambridge University Press, Cambridge

    Google Scholar 

  • Wiley EO (1975) Karl R. Popper, systematics, and classification: a reply to Walter Bock and other evolutionary taxonomists. Syst Zool 24:233–243

    Article  Google Scholar 

  • Zuckerkandl E, Pauling L (1962) Molecular disease, evolution, and genic heterogeneity. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic, New York, pp 189–225

    Google Scholar 

Download references

Acknowledgments

I thank Judith Masters for the opportunity to share these views, Bruno Maresca for inspiring me toward them, and two reviewers for offering suggestions for their clarification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey H. Schwartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schwartz, J.H. (2012). Organismal Biology, Molecular Systematics, and Phylogenetic Reconstruction. In: Masters, J., Gamba, M., Génin, F. (eds) Leaping Ahead. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4511-1_4

Download citation

Publish with us

Policies and ethics