Skip to main content

Global Optimization Approaches for Optimal Trajectory Planning

  • Chapter
  • First Online:
Modeling and Optimization in Space Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 73))

Abstract

Optimal trajectory design for interplanetary space missions is an extremely hard problem, mostly because of the very large number of local minimizers that real problems present. Despite the challenges of the task, it is possible, in the preliminary phase, to design low-cost high-energy trajectories with little or no human supervision. In many cases, the discovered paths are as cheap, or even cheaper, as the ones found by experts through lengthy and difficult processes. More interestingly, many of the tricks that experts used to design the trajectories, like, e.g., traveling along an orbit in fractional resonance with a given planet, naturally emerge from the computed solutions, despite neither the model nor the solver have been explicitly designed in order to exploit such knowledge. In this chapter we will analyze the modelling techniques that computational experiments have shown to be most successful, along with some of the algorithms that might be used to solve such problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1In fact, we use the putative global minimum in order to define f .

References

  1. Addis, B., Locatelli, M., Schoen, F.: Disk packing in a square: A new global optimization approach. INFORMS J. on Computing 20(4), 516–524 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Addis, B., Cassioli, A., Locatelli, M., Schoen, F.: A global optimization method for the design of space trajectories. COAP 3, 635–652 (2011)

    MathSciNet  Google Scholar 

  3. Armellin, R., Di Lizia, P., Topputo, F., Lavagna, M., Bernelli-Zazzera, F., Berz, M.: Gravity assist space pruning based on differential algebra. Celestial Mech. Dyn. Astron. 106(1), 1–24 (2010)

    Article  MATH  Google Scholar 

  4. Corana, A., Marchesi, M., Martini, C., Ridella, S.: Minimizing multimodal functions of continuous variables with the ‘simulated annealing’ algorithm. ACM Trans. Math. Software (TOMS) 13(3), 280 (1987)

    Google Scholar 

  5. Danby, J.: Fundamentals of Celestial Mechanics. Willman-Bell, Richmond (1988)

    Google Scholar 

  6. Di Lizia, P., Radice, G.: Advanced Global Optimisation Tools for Mission Analysis and Design. Tech. Rep. 03-4101b, European Space Agency, the Advanced Concepts Team, 2004

    Google Scholar 

  7. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gil-Fernández, J., Graziano, M., Gomez-Tierno, M., Milic, E.: Autonomous Low-Thrust Guidance: Application to SMART-1 and BepiColombo. Ann. New York Acad. Sci. 1017, 307–327 (2004), Astrodynamics, Space Missions, and Chaos

    Google Scholar 

  9. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12(4), 979–1006 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gill, P.E., Murray, W., Saunders, M.A.: User’s Guide for SNOPT Version 7, Software for Large-Scale Nonlinear Programming. Stanford Business Software Inc., Mountain View, USA (2006)

    Google Scholar 

  11. Greeley, R., Johnson, T., E.: Report of the NASA Science Definition Team for the Jupiter Icy Moons Orbiter. Tech. rep., NASA Science Definition Team, Feb. 2004

    Google Scholar 

  12. Grosso, A., Jamali, A., Locatelli, M., Schoen, F.: Solving the problem of packing equal and unequal circles in a circular container. J. Global Optim. 47(1), 63–81 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Izzo, D.: Lambert’s problem for exponential sinusoids. Tech. Rep. ACT-RPT-4100-DI-LMSP01, ESA, Apr. 2005

    Google Scholar 

  14. Izzo, D.: Global Trajectory Optimization Competition portal. http://www.esa.int/gsp/ACT/mad/pp/GTOC, July 2012

  15. Izzo, D.: Global optimization and space pruning for spacecraft trajectory design. In: Spacecraft Trajectory Optimization, pp. 178–200. Cambridge University Press, New York (2010)

    Google Scholar 

  16. Izzo, D., Becerra, V., Myatt, D., Nasuto, S., Bishop, J.: Search space pruning and global optimisation of multiple gravity assist spacecraft trajectories. J Global Optim. 38(2), 283–296 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Izzo, D., Vinko, T., Zapatero, M.: Global Trajectory Optimization Competition Database. http://www.esa.int/gsp/ACT/inf/op/globopt.htm, July 2012

  18. Katzkowski, M., Corral, C., Jehn, R., Pellon, J.-L., Landgraf, M., Khan, M., Yanez, A., Biesbroek, R.: BepiColombo Mercury Cornerstone Mission Analysis: Input to Definition Study. Tech. rep., ESA European Space Operations Centre, Apr. 2002

    Google Scholar 

  19. Kirkpatrick, S., Gelatt, C.D. Jr., Vecchi, M.P.: Optimization by simulated Annealing. Science 220, 671–680 (1983)

    MathSciNet  MATH  Google Scholar 

  20. Leary, R.H.: Global optimization on funneling landscapes. J. Global Optim. 18, 367–383 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Locatelli, M.: On the multilevel structure of global optimization problems. Comput. Optim. Appl. 30(1), 5–22 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Locatelli, M., Vasile, M.: A hybrid multiagent approach for global trajectory optimization. J. Global Optim. 44(4), 461–479 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Myatt, D., Becerra, V., Nasuto, S., Bishop, J.: Advanced Global Optimisation Tools for Mission Analysis and Design. Tech. Rep. 03-4101a, European Space Agency, the Advanced Concepts Team, 2004

    Google Scholar 

  24. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, USA (2006)

    MATH  Google Scholar 

  25. Parcher, D.W., Sims, J.A.: Gravity-assist trajectories to Jupiter using nuclear electric propulsion. In: AAS/AIAA Astrodynamics Specialist Conference, Aug. 2005

    Google Scholar 

  26. Sims, J.A., Flanagan, S.N.: Preliminary design of low-thrust interplanetary missions. In: AAS/AIAA Astrodynamics Specialist Conference, Aug. 1999

    Google Scholar 

  27. Strange, N.J., Sims, J.A.: Methods for the design of v-infinity leveraging maneuvers. In: AAS/AIAA Astrodynamics Specialist Conference, July/Aug. 2001

    Google Scholar 

  28. Tsiolkovsky, K.E.: Exploration of the universe with reaction machines (in Russian). Sci. Rev. 5 (1903)

    Google Scholar 

  29. Vasile, M., De Pascale, P.: Preliminary design of multiple gravity-assist trajectories. J. Spacecraft Rockets 43(4), 794–805 (2006)

    Article  Google Scholar 

  30. Vasile, M., Minisci, E., Locatelli, M.: An inflationary differential evolution algorithm for space trajectory optimization. IEEE Trans. Evol. Comput. 15(2), 267–281 (2011)

    Article  Google Scholar 

  31. Vavrina, M.A., Howell, K.C.: Global low-thrust trajectory optimization through hybridization of a genetic algorithm and a direct method. In: AIAA/AAS Astrodynamics Specialist Conference, Aug. 2008

    Google Scholar 

  32. Vinko, T., Izzo, D.: Global Optimisation Heuristics and Test Problems for Preliminary Spacecraft Trajectory Design. Tech. Rep. GOHTPPSTD, European Space Agency, the Advanced Concepts Team, 2008

    Google Scholar 

  33. Wales, D.J., Doye, J.P.K.: Global optimization by basin-hopping and the lowest energy structures of Lennard–Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101(28), 5111–5116 (1997)

    Article  Google Scholar 

  34. Whiffen, G.J.: An investigation of a Jupiter Galilean Moon orbiter trajectory. In: AAS/AIAA Astrodynamics Specialist Conference, Aug. 2003

    Google Scholar 

  35. Yam, C.H., McConaghy, T.T., Chen, K.J., Longuski, J.M.: Design of low-thrust gravity-assist trajectories to the outer planets. In: 55th International Astronautical Congress, Oct. 2004

    Google Scholar 

  36. Yam, C.H., Biscani, F., Izzo, D.: Global optimization of low-thrust trajectories via impulsive Delta-V transcription. In: 27th International Symposium on Space Technology and Science, July 2009

    Google Scholar 

  37. Yam, C.H., McConaghy, T.T., Chen, K.J., Longuski, J.M.: Preliminary design of nuclear electric propulsion missions to the outer planets. In: AIAA/AAS Astrodynamics Specialist Conference, Aug. 2004

    Google Scholar 

  38. Yarnoz, D.G., Jehn, R., Croon, M.: Interplanetary navigation along the low-thrust trajectory of bepiColombo. Acta Astronautica 59(1–5), 284–293 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Schoen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cassioli, A., Izzo, D., Di Lorenzo, D., Locatelli, M., Schoen, F. (2012). Global Optimization Approaches for Optimal Trajectory Planning. In: Fasano, G., Pintér, J. (eds) Modeling and Optimization in Space Engineering. Springer Optimization and Its Applications, vol 73. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4469-5_5

Download citation

Publish with us

Policies and ethics