Skip to main content

Nano-scale Investigation of Microstructural Phenomenon Contributing to Toughening of Nanoparticulate Reinforced Polymers

  • Conference paper
  • First Online:
Book cover Dynamic Behavior of Materials, Volume 1

Abstract

The objective of the current study is to employ precise and detailed nano-scale investigation to determine the physical mechanisms that contribute to the mechanical performance benefits of nano-particulate inclusions in polymer and polymer composite materials. A significant amount of work by the research community has experimentally illustrated the effective property benefits of nano-inclusions, thus the current work has elucidated some of the phenomenological causes behind these enhancement observations in a controlled fashion through a combination of micromechanical modeling and nano-scale experimentation under SEM observation. Nano-scale Mode I and Mode II fracture specimens have been designed to allow direct observation of crack growth in a nanoparticulate-reinforced epoxy system. Modeling employing the X-FEM node enrichment scheme for investigation of arbitrary-path crack propagation has been performed. Considerations critical to the accuracy of representation as well as the tractability of computation have been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Viana JC (2006) Polymeric materials for impact and energy dissipation. Plast Rubber Compos 35(6–7):260–267

    Google Scholar 

  2. Zhang J, Wang X, Lu L, Li D, Yang X (2003) Preparation and performance of high impact polystyrene (HIPS)/Nano-TiO2 nanocomposites. J Appl Polym Sci 87(3):381–385

    Article  Google Scholar 

  3. Tang W, Santare MH, Advani SG (2003) Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon 41(14):2779–2785

    Article  Google Scholar 

  4. Bartczak Z, Argon AS, Cohen RE, Weinberg M (1999) Toughness mechanism in semicrystalline polymer blends: II high-density polyethylene toughened with calcium carbonate filler particles. Polymer 40(9):2347–2365

    Article  Google Scholar 

  5. Singh D, Jayasimha T, Rai KN, Kumar A (2007) Preparation of poly(methylmethacrylate) nanocomposites with superior impact strength. J Appl Polym Sci 105(6):3183–3194

    Article  Google Scholar 

  6. Yang JL, Zhang Z, Zhang H (2005) The essential work of fracture of polyamide 66 filled with TiO2 nanoparticles. Compos Sci Technol 65(15–16):2374–2379

    Article  Google Scholar 

  7. Wetzel B, Rosso P, Haupert F, Friedrich A (2006) Epoxy nanocomposites – fracture and toughening mechanisms. Eng Fract Mech 73(16):2375–2398

    Article  Google Scholar 

  8. Han JT, Cho K (2006) Nanoparticle-induced enhancement in fracture toughness of highly loaded epoxy composites over a wide temperature range. J Mater Sci 41(13):4239–4245

    Article  Google Scholar 

  9. Uddin MF, Sun CT (2008) Impact resistance and toughness of composite laminates with nanoparticle – enhanced matrix. In: Proceedings international SAMPEL symposium and expo 2008, Long Beach, CA

    Google Scholar 

  10. Brunner AJ, Necola A, Rees M, Gasser P, Kornmann X, Thomann R et al (2006) The influence of silicate-based nano-filler on the fracture toughness of epoxy resin. Eng Fract Mech 73(16):2336–2345

    Article  Google Scholar 

  11. Mortezaei M, Famili M, Kokabi M (2011) The role of interfacial interactions on the glass-transition and viscoelastic properties of silica/polystyrene nanocomposites. Comp Sci Tech 71(8):1039–1045

    Article  Google Scholar 

  12. Hsieh TH, Kinloch AJ, Masania K et al (2010) The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. J Mater Sci 45:1193, 2011, Vol:46, Pages:4092–4092

    Article  Google Scholar 

  13. Hsieh TH, Kinloch AJ, Taylor AC et al (2011) The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer. J Mater Sci 46:7525–7535

    Article  Google Scholar 

  14. Lau KT, Gu C, Hui D (2006) A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Compos Part B: Eng 37(6):425–436

    Article  Google Scholar 

  15. Zhou SJ, Beazley DM, Lomdahl PS, Holian BL (1997) Large-scale molecular dynamics simulations of three-dimensional ductile failure. Phys Rev Lett 78(3):479–482

    Article  Google Scholar 

  16. Gawand AA, Whitney JM, Brockman RB, Tandon GP (2008) Interaction between a nanofiber and an arbitrarily oriented crack. J Compos Mater 42(1):45–68

    Google Scholar 

  17. Liu YJ, XU N, Luo JF (2000) Modeling of interphases in fiber-reinforced composites under transverse loading using the boundary element method. J Appl Mech Trans ASME 67(1):41–49

    Article  MATH  Google Scholar 

  18. Liu H, Brinson LC (2006) A hybrid numerical–analytical method for modeling the viscoelastic properties of polymer nanocomposites. J Appl Mech Trans ASME 73(5):758–768

    Article  MATH  Google Scholar 

  19. Hua L, Brinson LC (2008) Reinforcing efficiency of nanoparticles: a simple comparison for polymer nanocomposites. Compos Sci Technol 68(6):1502–1512

    Article  Google Scholar 

  20. Hbaieb K, Wang QX, Chia YHJ, Cotterell B (2007) Modelling stiffness of polymer/clay nanocomposites. Polymer 48(3):901–909

    Article  Google Scholar 

  21. Sheng N, Boyce MC, Parks DM, Rutledge GC, Abes J, Cohen RE (2004) Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. Polymer 45(2):487–506

    Article  Google Scholar 

  22. Thiagarajan G, Deshmukh K, Wang Y (2007) Nano finite element modeling of the mechanical behavior of biocomposites using multi-scale (virtual internal bond) material models. J Biomed Mater Res A 83(2):332–344

    Google Scholar 

  23. Wanga J, Pyrzb R (2004) Prediction of the overall moduli of layered silicatereinforced nanocomposites – part I: basic theory and formulas. Compos Sci Technol 64(7–8):925–934

    Article  Google Scholar 

  24. Karkkainen R, Yen C (2012) Dynamic modeling for rate-dependent and mode dependent cohesive interface failure analysis, J Comp Mat 46:2193–2201

    Google Scholar 

  25. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620

    Article  MathSciNet  MATH  Google Scholar 

  26. Ling D, Yang Q, Cox B (2009) An augmented finite element method for modeling arbitrary discontinuities in composite materials. Int J Fract 156:53–73

    Article  Google Scholar 

  27. Boesl B (2009) Fracture toughening mechanisms in nanoparticle and microparticle reinforced epoxy systems using multi-scale analysis. Dissertation, University of Florida

    Google Scholar 

  28. Abaqus Users Manual, Section 10.6

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation to Dr. Brian Schuster and Dr. Jason Robinette of the Army Research Laboratory for their efforts and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan L. Karkkainen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Karkkainen, R.L., Walter, T., Bujanda, A. (2013). Nano-scale Investigation of Microstructural Phenomenon Contributing to Toughening of Nanoparticulate Reinforced Polymers. In: Chalivendra, V., Song, B., Casem, D. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4238-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4238-7_28

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4237-0

  • Online ISBN: 978-1-4614-4238-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics