Skip to main content

Ascorbate in Tomato, a Model Fruit

  • Chapter
  • First Online:
Ascorbic Acid in Plants

Part of the book series: SpringerBriefs in Plant Science ((BRIEFSPLANT))

  • 1183 Accesses

Abstract

As one of the most important vegetable crops, the world-widely grown tomato provides rich sources of ascorbate for human’s diet. The elucidation of genome sequence and short life cycle makes tomato a model fruit for fundamental research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    PubMed  CAS  Google Scholar 

  2. Zou LP, Li HX, Ouyang B, Zhang JH, Ye ZB (2006) Cloning and mapping of genes involved in tomato ascorbic acid biosynthesis and metabolism. Plant Sci 170:120–127

    Google Scholar 

  3. Stevens R, Buret M, Duffe P, Garchery C, Baldet P, Rothan C, Causse M (2007) Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiol 143:1943–1953

    Article  PubMed  CAS  Google Scholar 

  4. Stevens R, Page D, Gouble B, Garchery C, Zamir D, Causse M (2008) Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant Cell Environ 31:1086–1096

    Article  PubMed  CAS  Google Scholar 

  5. Di Matteo A, Sacco A, Anacleria M, Pezzotti M, Delledonne M, Ferrarini A, Frusciante L, Barone A (2010) The ascorbic acid content of tomato fruits is associated with the expression of genes involved in pectin degradation. BMC Plant Biology 10:163

    Google Scholar 

  6. Ioannidi E, Kalamaki MS, Engineer C, Pateraki I, Alexandrou D, Mellidou I, Giovannonni J, Kanellis AK (2009) Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. J Exp Bot 60:663–678

    Article  PubMed  CAS  Google Scholar 

  7. Laing WA, Wright MA, Cooney J, Bulley SM (2007) The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. Proc Nat Acad Sci USA 104:9534–9539

    Article  PubMed  CAS  Google Scholar 

  8. Gilbert L, Alhagdow M, Nunes-Nesi A, Quemener B, Guillon F, Bouchet B, Faurobert M, Gouble B, Page D, Garcia V, Petit J, Stevens R, Causse M, Fernie AR, Lahaye M, Rothan C, Baldet P (2009) GDP-D-mannose 3,5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato. Plant J 60:499–508

    Article  PubMed  CAS  Google Scholar 

  9. Zhang CJ, Liu JX, Zhang YY, Cai XF, Gong PJ, Zhang JH, Wang TT, Li HX, Ye ZB (2011a) Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep 30:389–398

    Article  PubMed  CAS  Google Scholar 

  10. Alhagdow M, Mounet F, Gilbert L, Nunes-Nesi A, Garcia V, Just D, Petit J, Beauvoit B, Fernie AR, Rothan C, Baldet P (2007) Silencing of the mitochondrial ascorbate synthesizing enzyme L-galactono-1,4-lactone dehydrogenase affects plant and fruit development in tomato. Plant Physiol 145:1408–1422

    Article  PubMed  CAS  Google Scholar 

  11. Imai T, Niwa M, Ban Y, Hirai M, Oba K, Moriguchi T (2009) Importance of the L-galactonolactone pool for enhancing the ascorbate content revealed by L-galactonolactone dehydrogenase-overexpressing tobacco plants. Plant Cell Tiss Org Cult 96:105–112

    Article  CAS  Google Scholar 

  12. Zhang YY, Li HX, Shu WB, Zhang CJ, Ye ZB (2011b) RNA interference of a mitochondrial APX gene improves vitamin C accumulation in tomato fruit. Sci Hort 129:220–226

    Article  CAS  Google Scholar 

  13. Haroldsen VM, Chi-Ham CL, Kulkarni S, Lorence A, Bennett AB (2011) Constitutively expressed DHAR and MDHAR influence fruit, but not foliar ascorbate levels in tomato. Plant Physiol Biochem 49:1244–1249

    Article  PubMed  CAS  Google Scholar 

  14. Zhang WY, Lorence A, Gruszewski HA, Chevone BI, Nessler CL (2009) AMR1, an Arabidopsis gene that coordinately and negatively regulates the Mannose/L-Galactose ascorbic acid biosynthetic pathway. Plant Physiol 150:942–950

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyang Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author

About this chapter

Cite this chapter

Zhang, Y. (2013). Ascorbate in Tomato, a Model Fruit. In: Ascorbic Acid in Plants. SpringerBriefs in Plant Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4127-4_9

Download citation

Publish with us

Policies and ethics