Skip to main content

Enzymatic Synthesis of Unnatural Cyclic Triterpenes

  • Chapter
  • First Online:
Isoprenoid Synthesis in Plants and Microorganisms

Abstract

The broad substrate tolerance and catalytic potential of bacterial squalene cyclases and plant oxidosqualene cyclases are remarkable; the enzymes accept a wide variety of nonphysiological substrate analogues and efficiently perform sequential ring-forming reactions to produce a series of unnatural cyclic triterpenes. By utilizing such properties of the enzymes, it is possible to generate unnatural novel cyclic polyprenoids by enzymatic conversion of chemically synthesized substrate analogues. Here we present recent examples including (a) enzymatic formation of a “supranatural” hexacyclic polyprenoid as well as heteroaromatic ring containing cyclic polyprenoids by bacterial squalene–hopene cyclase from Alicyclobacillus acidocaldarius and (b) enzymatic cyclization of 22,23-dihydro-2,3-oxidosqualene and 24,30-bisnor-2,3-oxidosqualene by plant oxidosqualene-β-amyrin cyclase from Pisum sativum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe I (2007) Enzymatic synthesis of cyclic triterpenes. Nat Prod Rep 24:1311–1331

    Article  PubMed  CAS  Google Scholar 

  • Abe I, Rohmer M (1991) Enzymatic cyclization of 2,3-dihydrosqualene into euph-7-ene by a cell-free system from the protozoon Tetrahymena pyriformis. J Chem Soc Chem Comm 902–903

    Google Scholar 

  • Abe I, Rohmer M, Prestwich GD (1993) Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem Rev 93:2189–2206

    Article  CAS  Google Scholar 

  • Abe I, Tanaka H, Noguchi H (2002) Enzymatic formation of an unnatural hexacyclic C35 polyprenoid by bacterial squalene cyclase. J Am Chem Soc 124:14514–14515

    Article  PubMed  CAS  Google Scholar 

  • Abe I, Tanaka H, Takahashi Y, Lou W, Noguchi H (2003) In: Proceedings of the 45th symposium on the chemistry of natural products, Kyoto

    Google Scholar 

  • Corey EJ, Gross SK (1967) Formation of sterols by the action of 2,3-oxidosqualene-sterol cyclase on the factitious substrates 2,3:22,23-dioxidosqualene and 2,3-oxido-22,23-dihydrosqualene. J Am Chem Soc 89:4561–4562

    Google Scholar 

  • Corey EJ, Gross SK (1968) Direct biosynthesis of the 29,30-bisnoramyrin system from 29,30-bisnor-2,3-oxidosqualene in pea seedlings. J Am Chem Soc 90: 5045–5046

    Article  PubMed  CAS  Google Scholar 

  • Eschenmoser A, Arigoni D (2005) Revisited after 50 years: ‘the stereochemical interpretation of the biogenetic isoprene rule for the triterpenes’. Helv Chim Acta 88:3011–3050

    Article  CAS  Google Scholar 

  • Eschenmoser A, Ruzicka L, Jeger O, Arigoni D (1955) Eine stereochemische Interpretation der biogenetischen Isoprenregel bei den Triterpenen. Helv Chim Acta 38:1890–1904

    Article  CAS  Google Scholar 

  • Hoshino T, Sato T (2002) Squalene–hopene cyclase: catalytic mechanism and substrate recognition. Chem Commun 291–301

    Google Scholar 

  • Hoshino T, Kumai Y, Kudo I, Nakano S, Ohashi S (2004) Enzymatic cyclization reactions of geraniol, farnesol and geranylgeraniol, and those of truncated squalene analogs having C20 and C25 by recombinant squalene cyclase. Org Biomol Chem 2:2650–2657

    Article  PubMed  CAS  Google Scholar 

  • Kushiro T, Shibuya M, Ebizuka Y (1998) β-Amyrin synthase - cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. Eur J Biochem 256:238–244

    Article  PubMed  CAS  Google Scholar 

  • Kushiro T, Shibuya M, Ebizuka Y (1999) Chimeric triterpene synthase. A possible model for multifunctional triterpene synthase. J Am Chem Soc 121:1208–1216

    Article  CAS  Google Scholar 

  • Morita M, Shibuya M, Kushiro T, Masuda K, Ebizuka Y (2000) Molecular cloning and functional expression of triterpene synthases from pea (Pisum sativum). New α-amyrin-producing enzyme is a multifunctional triterpene synthase. Eur J Biochem 267:3453–3460

    Article  PubMed  CAS  Google Scholar 

  • Ourisson G, Rohmer M, Poralla K (1987) Prokaryotic hopanoids and other polyprenoid sterol surrogates. Annu Rev Microbiol 41:301–333

    Article  PubMed  CAS  Google Scholar 

  • Pale-Grosdemange C, Feil C, Rohmer M, Poralla K (1998) Occurrence of cationic intermediates and deficient control during the enzymatic cyclization of squalene to hopanoids. Angew Chem Int Ed 37:2237–2240

    Article  CAS  Google Scholar 

  • Poralla K (1999) Cycloartenol and other triterpene ­cyclases. In: Barton DHR, Nakanishi K (eds) Comprehensive natural products chemistry, vol 2. Pergamon, New York

    Google Scholar 

  • Rajamani R, Gao J (2003) Balancing kinetic and thermodynamic control: the mechanism of carbocation cyclization by squalene cyclase. J Am Chem Soc 125:12768–12781

    Article  PubMed  CAS  Google Scholar 

  • Reinert DJ, Balliano G, Schulz GE (2004) Conversion of squalene to the pentacarbocyclic hopene. Chem Biol 11:121–126

    PubMed  CAS  Google Scholar 

  • Segura MJR, Jackson BE, Matsuda SPT (2003) Mutagenesis approaches to deduce structure-function relationships in terpene synthases. Nat Prod Rep 20:304–317

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Noguchi H, Abe I (2005) Enzymatic formation of indole-containing unnatural cyclic polyprenoids by bacterial squalene–hopene cyclase. Org Lett 7: 5873–5876

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Noma H, Noguchi H, Abe I (2006) Enzymatic formation of pyrrole-containing novel cyclic polyprenoids by bacterial squalene–hopene cyclase. Tetrahedron Lett 47:3085–3089

    Article  CAS  Google Scholar 

  • van Tamelen EE (1982) Bioorganic characterization and mechanism of the 2,3-oxidosqualene-lanosterol conversion. J Am Chem Soc 104:6480–6481

    Article  Google Scholar 

  • Wendt KU, Poralla K, Schulz GE (1997) Structure and function of a squalene cyclase. Science 277:1811–1815

    Article  PubMed  CAS  Google Scholar 

  • Wendt KU, Schulz GE, Corey EJ, Liu DR (2000) Enzyme mechanisms for polycyclic triterpene formation. Angew Chem Int Ed 39:2812–2833

    Article  CAS  Google Scholar 

  • Woodward RB, Bloch K (1953) The cyclization of squalene in cholesterol synthesis. J Am Chem Soc 75:2023–2024

    Article  CAS  Google Scholar 

  • Xiong Q, Zhu X, Wilson WK, Ganesan A, Matsuda SPT (2003) Enzymatic synthesis of an indole diterpene by an oxidosqualene cyclase: mechanistic, biosynthetic, and phylogenetic implications. J Am Chem Soc 125:9002–9003

    Article  PubMed  CAS  Google Scholar 

  • Xu R, Fazio GC, Matsuda SPT (2004) On the origins of triterpenoid skeletal diversity. Phytochemistry 65: 261–291

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author expresses his appreciation to an excellent group of coworkers at Shizuoka, whose contributions are cited in the text. Financial support at Shizuoka has been provided by the PRESTO program from Japan Science and Technology Agency and Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikuro Abe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Abe, I. (2012). Enzymatic Synthesis of Unnatural Cyclic Triterpenes. In: Bach, T., Rohmer, M. (eds) Isoprenoid Synthesis in Plants and Microorganisms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4063-5_27

Download citation

Publish with us

Policies and ethics