Skip to main content

Placental Development, Evolution, and Epigenetics of Primate Pregnancies

  • Chapter
  • First Online:
Building Babies

Abstract

Understanding the epigenetic regulation of pregnancy in primates requires the integration of many fields of scientific inquiry including primate phylogeny, the evolution of placental anatomy, comparative genomics, and epigenomics. Primate pregnancies vary enormously in terms of timing of embryo implantation, placental anatomy, uterine shape, rates of fetal growth and development, neonatal body mass, number of offspring per pregnancy, and gestation length. Epigenetic mechanisms may play a role in regulating some if not all of these parameters in pregnancy, but current knowledge is limited. Moreover, in addition to normal variation, the potential role of epigenetics in obstetrical syndromes (e.g. preterm birth, preeclampsia and intrauterine growth retardation) is becoming more appreciated, and evidence suggests the fetal environment in which epigenetic programming takes place can have long-lasting consequences on adult health. In this chapter we review the immunological paradox that characterizes pregnancies in placental mammals, and we also review the types of interactions that can exist between mother and fetus. These interactions are mediated through the placenta, an organ that includes both fetal and maternal tissue and range from conflict to cooperation. We propose that the placenta plays a unique role in maternal–fetal interactions due to its short life span, and we describe how different forms of maternal–fetal interdigitation can potentially be involved in fetal growth and development. There was likely a selective advantage gained by altering fetal growth rate, neonatal size, gestation length, and reproductive anatomy. Study of the natural and pathological anatomical, genetic, and epigenetic variation that characterizes primate pregnancies should shed light on the evolution and diversification of the primates and also provide insight into the evolution of some human diseases. The role of epigenetics in these processes, in particular, requires further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson LM, Riffle L, Wilson R, Travlos GS, Lubomirski MS, Alvord WG (2006) Preconceptional fasting of fathers alters serum glucose in offspring of mice. Nutrition 22(3):327–331

    PubMed  CAS  Google Scholar 

  • Apostolidou S, Abu-Amero S, O’Donoghue K, Frost J, Olafsdottir O, Chavele KM, Whittaer JC, Loughna P, Stanier P, Moore GE (2007) Elevated placental expression of the imprinted PHLDA2 gene is associated with low birth weight. J Mol Med 85(4):379–387

    PubMed  CAS  Google Scholar 

  • Barker DJ (1992) Fetal growth and adult disease. Br J Obstet Gynaecol 99(4):275–276

    PubMed  CAS  Google Scholar 

  • Barker DJP (1998) Mothers, babies, and health in later life. Churchill Livingstone, New York

    Google Scholar 

  • Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS (1993) Fetal nutrition and cardiovascular disease in adult life. Lancet 341(8850):938–941

    PubMed  CAS  Google Scholar 

  • Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38(1):567–593

    Google Scholar 

  • Benirschke K, Kaufmann P, Baergen R (2006) Pathology of the human placenta. Springer, New York

    Google Scholar 

  • Bookman EB, McAllister K, Gillanders E, Wanke K, Balshaw D, Rutter J, Reedy J, Shaughnessy D, Agurs-Collins T, Paltoo D et al (2011) Gene-environment interplay in common complex diseases: forging an integrative model-recommendations from an NIH workshop. Genet Epidemiol 35:217–225

    Google Scholar 

  • Brosens I, Pijnenborg R, Vercruysse L, Romero R (2010) The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am J Obstet Gynecol 204(3):193–201

    PubMed  Google Scholar 

  • Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, Willard HF (1991) A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349(6304):38–44

    PubMed  CAS  Google Scholar 

  • Brown CJ, Hendrich BD, Rupert JL, Lafreniere RG, Xing Y, Lawrence J, Willard HF (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71(3):527–542

    PubMed  CAS  Google Scholar 

  • Burt A, Trivers R (2008) Genes in conflict, the biology of selfish genetic elements. Harvard University Press, Cambridge

    Google Scholar 

  • Capellini I, Venditti C, Barton RA (2011) Placentation and maternal investment in mammals. Am Nat 177(1):86–98

    PubMed  Google Scholar 

  • Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, Bock C, Li C, Gu H, Zamore PD et al (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143(7):1084–1096

    PubMed  CAS  Google Scholar 

  • Carter AM, Mess A (2007) Evolution of the placenta in eutherian mammals. Placenta 28(4):259–262

    PubMed  CAS  Google Scholar 

  • Chang SC, Tucker T, Thorogood NP, Brown CJ (2006) Mechanisms of X-chromosome inactivation. Front Biosci 11:852–866

    PubMed  CAS  Google Scholar 

  • Chen L, Wang D, Wu Z, Ma L, Daley GQ (2010) Molecular basis of the first cell fate determination in mouse embryogenesis. Cell Res 20(9):982–993

    PubMed  CAS  Google Scholar 

  • Cirulli F, Santucci D, Laviola G, Alleva E, Levine S (1994) Behavioral and hormonal responses to stress in the newborn mouse: effects of maternal deprivation and chlordiazepoxide. Dev Psychobiol 27:301–316

    PubMed  CAS  Google Scholar 

  • Cirulli F, Francia N, Berry A, Aloe L, Alleva E, Suomi SJ (2009) Early life stress as a risk factor for mental health: role of neurotrophins from rodents to non-human primates. Neurosci Biobehav Rev 33(4):573–585

    PubMed  CAS  Google Scholar 

  • Clancy KBH (2012) Inflammation, reproduction, and the Goldilocks Principle. In: Hinde K, Clancy KBH, Rutherford JN (eds) Building babies: primate development in proximate and ultimate perspectives. Springer, New York

    Google Scholar 

  • Clemson CM, McNeil JA, Willard HF, Lawrence JB (1996) XIST RNA paints the inactive X ­chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 132(3):259–275

    PubMed  CAS  Google Scholar 

  • Cohen DE, Davidow LS, Erwin JA, Xu N, Warshawsky D, Lee JT (2007) The DXPas34 repeat regulates random and imprinted X inactivation. Dev Cell 12(1):57–71

    PubMed  CAS  Google Scholar 

  • Constancia M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R, Stewart F, Kelsey G, Fowden A, Sibley C et al (2002) Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417(6892):945–948

    PubMed  CAS  Google Scholar 

  • Curley JP, Mashoodh R, Champagne FA (2011) Epigenetics and the origins of paternal effects. Horm Behav 59(3):306–314

    PubMed  Google Scholar 

  • Daelemans C, Ritchie ME, Smits G, Abu-Amero S, Sudbery IM, Forrest MS, Campino S, Clark TG, Stanier P, Kwiatkowski D et al (2010) High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta. BMC Genet 11:25

    PubMed  Google Scholar 

  • Debrand E, Chureau C, Arnaud D, Avner P, Heard E (1999) Functional analysis of the DXPas34 locus, a 3′ regulator of Xist expression. Mol Cell Biol 19(12):8513–8525

    PubMed  CAS  Google Scholar 

  • DeChiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64(4):849–859

    PubMed  CAS  Google Scholar 

  • Devlin AM, Brain U, Austin J, Oberlander TF (2010) Prenatal exposure to maternal depressed mood and the MTHFR C677T variant affect SLC6A4 methylation in infants at birth. PLoS One 5(8):e12201

    PubMed  Google Scholar 

  • Diplas AI, Lambertini L, Lee MJ, Sperling R, Lee YL, Wetmur J, Chen J (2009) Differential expression of imprinted genes in normal and IUGR human placentas. Epigenetics 4(4):235–240

    PubMed  CAS  Google Scholar 

  • Drake TA, Schadt EE, Davis RC, Lusis AJ (2005) Integrating genetic and gene expression data to study the metabolic syndrome and diabetes in mice. Am J Ther 12(6):503–511

    PubMed  Google Scholar 

  • Eccleston A, DeWitt N, Gunter C, Marte B, Nath D (2007) Epigenetics. Nature 447(395)

    Google Scholar 

  • Edmonds DK, Lindsay KS, Miller JF, Williamson E, Wood PJ (1982) Early embryonic mortality in women. Fertil Steril 38(4):447–453

    PubMed  CAS  Google Scholar 

  • Edwards CA, Ferguson-Smith AC (2007) Mechanisms regulating imprinted genes in clusters. Curr Opin Cell Biol 19(3):281–289

    PubMed  CAS  Google Scholar 

  • Ehrlich P, Raven P (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Google Scholar 

  • Elliot MG, Crespi BJ (2009) Phylogenetic evidence for early hemochorial placentation in eutheria. Placenta 30(11):949–967

    PubMed  CAS  Google Scholar 

  • Fox-Lee L, Schust DJ (2007) Recurrent pregnancy loss. In: Berek JS (ed) Berek and Novak’s gynecology, 14th edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Frost JM, Moore GE (2010) The importance of imprinting in the human placenta. PLoS Genet 6:e1001015

    PubMed  Google Scholar 

  • Fujimoto A, Mitalipov SM, Kuo HC, Wolf DP (2006) Aberrant genomic imprinting in rhesus monkey embryonic stem cells. Stem Cells 24(3):595–603

    PubMed  CAS  Google Scholar 

  • Gheorghe CP, Goyal R, Mittal A, Longo LD (2010) Gene expression in the placenta: maternal stress and epigenetic responses. Int J Dev Biol 54(2–3):507–523

    PubMed  CAS  Google Scholar 

  • Gilbert SF, Epel D (2008) Ecological developmental biology: integrating epigenetics, medicine, and evolution. Sinauer Associates, Sunderland, 459 pp

    Google Scholar 

  • Gluckman PD, Hanson MA, Cooper C, Thornburg KL (2008) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359(1):61–73

    PubMed  CAS  Google Scholar 

  • Gluckman PD, Hanson MA, Low FM (2011) The role of developmental plasticity and epigenetics in human health. Birth Defects Res C Embryo Today 93(1):12–18

    PubMed  CAS  Google Scholar 

  • Goodman M (1963) Man’s place in the phylogeny of primates as reflected in serum proteins. In: Washburn SL (ed) Classification and human evolution. Wenner-Gren Foundation, New York, pp 204–234

    Google Scholar 

  • Gregg C, Zhang J, Butler JE, Haig D, Dulac C (2010a) Sex-specific parent-of-origin allelic ­expression in the mouse brain. Science 329(5992):682–685

    PubMed  CAS  Google Scholar 

  • Gregg C, Zhang J, Weissbourd B, Luo S, Schroth GP, Haig D, Dulac C (2010b) High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 329(5992): 643–648

    PubMed  CAS  Google Scholar 

  • Haig D (2002) Genomic imprinting and kinship. Rutgers University Press, New Brunswick, 218 pp

    Google Scholar 

  • Haig D, Graham C (1991) Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell 64(6):1045–1046

    PubMed  CAS  Google Scholar 

  • Harlow HF, Zimmermann RR (1959) Affectional responses in the infant monkey; orphaned baby monkeys develop a strong and persistent attachment to inanimate surrogate mothers. Science 130(3373):421–432

    PubMed  CAS  Google Scholar 

  • Hill JP (1932) The developmental history of the primates. Philo Trans R Soc Lon B 221:45–178

    PubMed  CAS  Google Scholar 

  • Hillier TA, Pedula KL, Schmidt MM, Mullen JA, Charles MA, Pettitt DJ (2007) Childhood obesity and metabolic imprinting: the ongoing effects of maternal hyperglycemia. Diabetes Care 30(9):2287–2292

    PubMed  Google Scholar 

  • Hinde K (2012) Lactational programming of infant behavioral phenotype. In: Hinde K, Clancy KBH, Rutherford JN (eds) Building babies: primate development in proximate and ultimate perspectives. Springer, New York

    Google Scholar 

  • Hocher B, Slowinski T, Stolze T, Pleschka A, Neumayer HH, Halle H (2000) Association of maternal G protein beta3 subunit 825 T allele with low birthweight. Lancet 355(9211):1241–1242

    PubMed  CAS  Google Scholar 

  • Hoet JJ, Hanson MA (1999) Intrauterine nutrition: its importance during critical periods for cardiovascular and endocrine development. J Physiol 514(Pt 3):617–627

    PubMed  CAS  Google Scholar 

  • Hutter B, Bieg M, Helms V, Paulsen M (2010) Imprinted genes show unique patterns of sequence conservation. BMC Genomics 11:649

    PubMed  Google Scholar 

  • Jablonka E, Lamb M (2005) Evolution in four dimensions: genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT Press, Cambridge

    Google Scholar 

  • Jinno Y, Ikeda Y, Yun K, Maw M, Masuzaki H, Fukuda H, Inuzuka K, Fujishita A, Ohtani Y, Okimoto T et al (1995) Establishment of functional imprinting of the H19 gene in human developing placentae. Nat Genet 10(3):318–324

    PubMed  CAS  Google Scholar 

  • Johnson RM, Prychitko T, Gumucio D, Wildman DE, Uddin M, Goodman M (2006) Phylogenetic comparisons suggest that distance from the locus control region guides developmental expression of primate beta-type globin genes. Proc Natl Acad Sci USA 103(9):3186–3191

    PubMed  CAS  Google Scholar 

  • Jones KE, Bielby J, Cardillo M, Fritz SA, O’Dell J, Orme CDL, Safi K, Sechrest W, Boakes EH, Carbone C et al (2009) PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90(9):2648

    Google Scholar 

  • Kaati G, Bygren LO, Edvinsson S (2002) Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet 10(11):682–688

    PubMed  CAS  Google Scholar 

  • Kalscheuer VM, Mariman EC, Schepens MT, Rehder H, Ropers HH (1993) The insulin-like growth factor type-2 receptor gene is imprinted in the mouse but not in humans. Nat Genet 5(1):74–78

    PubMed  CAS  Google Scholar 

  • Kappeler PM, Pereira ME, van Schaik CP (2003) Primate life histories and socioecology. In: Kappeler PM, Pereira ME (eds) Primate life histories and socioecology. University of Chicago Press, Chicago, pp 1–23

    Google Scholar 

  • Kaufman J, Plotsky PM, Nemeroff CB, Charney DS (2000) Effects of early adverse experiences on brain structure and function: clinical implications. Biol Psychiatry 48(8):778–790

    PubMed  CAS  Google Scholar 

  • Keverne B (2009) Monoallelic gene expression and mammalian evolution. Bioessays 31(12): 1318–1326

    PubMed  CAS  Google Scholar 

  • Keverne EB, Curley JP (2008) Epigenetics, brain evolution and behaviour. Front Neuroendocrinol 29(3):398–412

    PubMed  CAS  Google Scholar 

  • Kinnally E (2012) Genome-environment coordination in neurobehavioral development. In: Hinde K, Clancy KBH, Rutherford JN (eds) Building babies: primate development in proximate and ultimate perspectives. Springer, New York

    Google Scholar 

  • Kinnally EL, Tarara ER, Mason WA, Mendoza SP, Abel K, Lyons LA, Capitanio JP (2010) Serotonin transporter expression is predicted by early life stress and is associated with ­disinhibited behavior in infant rhesus macaques. Genes Brain Behav 9(1):45–52

    PubMed  CAS  Google Scholar 

  • Koenen KC, Uddin M, Chang SC, Aiello AE, Wildman DE, Goldmann E, Galea S (2011) SLC6A4 methylation modifies the effect of the number of traumatic events on risk for post traumatic stress disorder. Depress Anxiety 28(8):639–647

    PubMed  CAS  Google Scholar 

  • Larsen WJ (2001) Human embryology. Churchill Livingstone, Philadelphia

    Google Scholar 

  • Lee JT, Davidow LS, Warshawsky D (1999a) Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Genet 21(4):400–404

    PubMed  CAS  Google Scholar 

  • Lee JT, Lu N, Han Y (1999b) Genetic analysis of the mouse X inactivation center defines an 80-kb multifunction domain. Proc Natl Acad Sci USA 96(7):3836–3841

    PubMed  CAS  Google Scholar 

  • Levine S (1957) Infantile experience and resistance to physiological stress. Science 126:405

    PubMed  CAS  Google Scholar 

  • Luckett WP, Kuhn H (1974) Reproductive biology of the primates. S. Karger, Basel and New York, 288 pp

    Google Scholar 

  • Lumey LH (1992) Decreased birthweights in infants after maternal in utero exposure to the Dutch famine of 1944-1945. Paediatr Perinat Epidemiol 6(2):240–253

    PubMed  CAS  Google Scholar 

  • Maccani MA, Marsit CJ (2009) Epigenetics in the placenta. Am J Reprod Immunol 62(2):78–89

    PubMed  CAS  Google Scholar 

  • Machado CJ (2012) Maternal influences on social and neural development in rhesus monkeys. In: Hinde K, Clancy KBH, Rutherford JN (eds) Building babies: primate development in proximate and ultimate perspectives. Springer, New York

    Google Scholar 

  • Marlin R, Nugeyre MT, Duriez M, Cannou C, Le Breton A, Berkane N, Barre-Sinoussi F, Menu E (2011) Decidual soluble factors participate in the control of HIV-1 infection at the maternofetal interface. Retrovirology 8:58

    PubMed  CAS  Google Scholar 

  • Martin RD, Martin A-E (1990) Primate origins and evolution: a phylogenetic reconstruction. Chapman and Hall, London

    Google Scholar 

  • McMinn J, Wei M, Schupf N, Cusmai J, Johnson EB, Smith AC, Weksberg R, Thaker HM, Tycko B (2006) Unbalanced placental expression of imprinted genes in human intrauterine growth restriction. Placenta 27(6–7):540–549

    PubMed  CAS  Google Scholar 

  • Medawar P (1953) Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Symp Soc Exp Biol 44:320–338

    Google Scholar 

  • Mess A, Carter AM (2006) Evolutionary transformations of fetal membrane characters in Eutheria with special reference to Afrotheria. J Exp Zool B Mol Dev Evol 306(2):140–163

    PubMed  Google Scholar 

  • Moffett A, Loke YW (2004) The immunological paradox of pregnancy: a reappraisal. Placenta 25(1):1–8

    PubMed  CAS  Google Scholar 

  • Monk D, Arnaud P, Apostolidou S, Hills FA, Kelsey G, Stanier P, Feil R, Moore GE (2006) Limited evolutionary conservation of imprinting in the human placenta. Proc Natl Acad Sci USA 103(17):6623–6628

    PubMed  CAS  Google Scholar 

  • Moore T, Haig D (1991) Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 7(2):45–49

    PubMed  CAS  Google Scholar 

  • Mossman HW (1987) Vertebrate fetal membranes: comparative ontogeny and morphology, evolution, phylogenetic significance, basic functions, research opportunities. Rutgers University Press, New Brunswick

    Google Scholar 

  • Murphy WJ, Eizirik E, O’Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW et al (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294(5550):2348–2351

    PubMed  CAS  Google Scholar 

  • Nathanielsz PW (1999) Life in the womb: the origin of health and disease. Promethean Press, Ithaca

    Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    PubMed  CAS  Google Scholar 

  • Nelissen EC, van Montfoort AP, Dumoulin JC, Evers JL (2011) Epigenetics and the placenta. Hum Reprod 17(3):397–417

    Google Scholar 

  • Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ (2010) Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 467(7318):963–966

    PubMed  CAS  Google Scholar 

  • O’Connell MJ, Loughran NB, Walsh TA, Donoghue MT, Schmid KJ, Spillane C (2010) A phylogenetic approach to test for evidence of parental conflict or gene duplications associated with protein-encoding imprinted orthologous genes in placental mammals. Mamm Genome 21(9–10):486–498

    PubMed  Google Scholar 

  • Ogawa Y, Lee JT (2003) Xite, X-inactivation intergenic transcription elements that regulate the probability of choice. Mol Cell 11(3):731–743

    PubMed  CAS  Google Scholar 

  • Ohhata T, Hoki Y, Sasaki H, Sado T (2008) Crucial role of antisense transcription across the Xist promoter in Tsix-mediated Xist chromatin modification. Development 135(2):227–235

    PubMed  CAS  Google Scholar 

  • Okamoto I, Patrat C, Thepot D, Peynot N, Fauque P, Daniel N, Diabangouaya P, Wolf JP, Renard JP, Duranthon V et al (2011) Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 472(7343):370–374

    PubMed  CAS  Google Scholar 

  • Papper Z, Jameson NM, Romero R, Weckle AL, Mittal P, Benirschke K, Santolaya-Forgas J, Uddin M, Haig D, Goodman M et al (2009) Ancient origin of placental expression in the growth ­hormone genes of anthropoid primates. Proc Natl Acad Sci USA 106(40):17083–17088

    PubMed  CAS  Google Scholar 

  • Pembrey ME, Bygren LO, Kaati G, Edvinsson S, Northstone K, Sjostrom M, Golding J (2006) ­Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet 14(2):159–166

    PubMed  Google Scholar 

  • Pijnenborg R, Vercruysse L, Hanssens M (2008) Fetal-maternal conflict, trophoblast invasion, preeclampsia, and the red queen. Hypertens Pregnancy 27(2):183–196

    PubMed  Google Scholar 

  • Price KC, Coe CL (2000) Maternal constraint on fetal growth patterns in the rhesus monkey (Macaca mulatta): the intergenerational link between mothers and daughters. Hum Reprod 15(2):452–457

    PubMed  CAS  Google Scholar 

  • Price KC, Hyde JS, Coe CL (1999) Matrilineal transmission of birth weight in the rhesus monkey (Macaca mulatta) across several generations. Obstet Gynecol 94(1):128–134

    PubMed  CAS  Google Scholar 

  • Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447(7143):425–432

    PubMed  CAS  Google Scholar 

  • Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2(1):21–32

    PubMed  CAS  Google Scholar 

  • Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293(5532):1089–1093

    PubMed  CAS  Google Scholar 

  • Robertson MC, Friesen HG (1981) Two forms of rat placental lactogen revealed by radioimmunoassay. Endocrinology 108(6):2388–2390

    PubMed  CAS  Google Scholar 

  • Robertson MC, Gillespie B, Friesen HG (1982) Characterization of the two forms of rat placental lactogen (rPL): rPL-I and rPL-II. Endocrinology 111(6):1862–1866

    PubMed  CAS  Google Scholar 

  • Romero R (1996) The child is the father of the man. Prenat Neonatal Med 1:8–11

    Google Scholar 

  • Romero R, Espinoza J, Kusanovic JP, Gotsch F, Hassan S, Erez O, Chaiworapongsa T, Mazor M (2006) The preterm parturition syndrome. BJOG 113(Suppl 3):17–42

    PubMed  CAS  Google Scholar 

  • Rutherford JN (2009) Fetal signaling through placental structure and endocrine function: illustrations and implications from a nonhuman primate model. Am J Hum Biol 21(6):745–753

    PubMed  Google Scholar 

  • Rutherford JN (2012) The primate placenta as an agent of developmental and health trajectories across the lifecourse. In: Hinde K, Clancy KBH, Rutherford JN (eds) Building babies: primate development in proximate and ultimate perspectives. Springer, New York

    Google Scholar 

  • Sado T, Hoki Y, Sasaki H (2005) Tsix silences Xist through modification of chromatin structure. Dev Cell 9(1):159–165

    PubMed  CAS  Google Scholar 

  • Salas M, John R, Saxena A, Barton S, Frank D, Fitzpatrick G, Higgins MJ, Tycko B (2004) Placental growth retardation due to loss of imprinting of Phlda2. Mech Dev 121(10):1199–1210

    PubMed  CAS  Google Scholar 

  • Sanders BJ, Anticevic A (2007) Maternal separation enhances neuronal activation and cardiovascular responses to acute stress in borderline hypertensive rats. Behav Brain Res 183:25–30

    PubMed  CAS  Google Scholar 

  • Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241(1):172–182

    PubMed  CAS  Google Scholar 

  • Seay B, Hansen E, Harlow HF (1962) Mother-infant separation in monkeys. J Child Psychol Psychiatry 3:123–132

    PubMed  CAS  Google Scholar 

  • Stavropoulos N, Rowntree RK, Lee JT (2005) Identification of developmentally specific enhancers for Tsix in the regulation of X chromosome inactivation. Mol Cell Biol 25(7):2757–2769

    PubMed  CAS  Google Scholar 

  • Suomi SJ (2006) Risk, resilience, and gene x environment interactions in rhesus monkeys. Ann N Y Acad Sci 1094:52–62

    PubMed  Google Scholar 

  • Temple IK, Mackay DJG (1993) Diabetes mellitus, 6q24-related transient neonatal. In: Pagon RA (ed) GeneReviews. University of Washington, Seattle

    Google Scholar 

  • Than NG, Romero R, Goodman M, Weckle A, Xing J, Dong Z, Xu Y, Tarquini F, Szilagyi A, Gal P et al (2009) A primate subfamily of galectins expressed at the maternal-fetal interface that promote immune cell death. Proc Natl Acad Sci USA 106(24):9731–9736

    PubMed  CAS  Google Scholar 

  • Tobi EW, Heijmans BT, Kremer D, Putter H, Delemarre-van de Waal HA, Finken MJ, Wit JM, Slagboom PE (2011) DNA methylation of IGF2, GNASAS, INSIGF and LEP and being born small for gestational age. Epigenetics 6(2):171–176

    PubMed  CAS  Google Scholar 

  • Uddin M, Aiello AE, Wildman DE, Koenen KC, Pawelec G, de Los SR, Goldmann E, Galea S (2010a) Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proc Natl Acad Sci USA 107(20):9470–9475

    PubMed  CAS  Google Scholar 

  • Uddin M, Koenen KC, Aiello AE, Wildman DE, de Los Santos R, Galea S (2010b) Epigenetic and inflammatory marker profiles associated with depression in a community-based epidemiologic sample. Psychol Med:1–11

    Google Scholar 

  • Vigneau S, Augui S, Navarro P, Avner P, Clerc P (2006) An essential role for the DXPas34 tandem repeat and Tsix transcription in the counting process of X chromosome inactivation. Proc Natl Acad Sci USA 103(19):7390–7395

    PubMed  CAS  Google Scholar 

  • Waddington CH (1942) The epigenotype. Endeavour 1:18–20

    Google Scholar 

  • Wang X, Soloway PD, Clark AG (2011) A survey for novel imprinted genes in the mouse placenta by mRNA-seq. Genetics 189(1):109–122

    PubMed  CAS  Google Scholar 

  • Wilcox AJ, Weinberg CR, O’Connor JF, Baird DD, Schlatterer JP, Canfield RE, Armstrong EG, Nisula BC (1988) Incidence of early loss of pregnancy. N Engl J Med 319(4):189–194

    PubMed  CAS  Google Scholar 

  • Wildman DE, Chen C, Erez O, Grossman LI, Goodman M, Romero R (2006) Evolution of the mammalian placenta revealed by phylogenetic analysis. Proc Natl Acad Sci USA 103(9): 3203–3208

    PubMed  CAS  Google Scholar 

  • Wildman DE, Uddin M, Opazo JC, Liu G, Lefort V, Guindon S, Gascuel O, Grossman LI, Romero R, Goodman M (2007) Genomics, biogeography, and the diversification of placental mammals. Proc Natl Acad Sci USA 104(36):14395–14400

    PubMed  CAS  Google Scholar 

  • Wilkins JF, Haig D (2003) What good is genomic imprinting: the function of parent-specific gene expression. Nat Rev Genet 4(5):359–368

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Cudd TA, Meininger CJ, Spencer TE (2004) Maternal nutrition and fetal development. J Nutr 134(9):2169–2172

    PubMed  CAS  Google Scholar 

  • Xu N, Tsai CL, Lee JT (2006) Transient homologous chromosome pairing marks the onset of X inactivation. Science 311(5764):1149–1152

    PubMed  CAS  Google Scholar 

  • Ying W, Jingli F, Wei SW, Li WL (2010) Genomic imprinting status of IGF-II and H19 in placentas of fetal growth restriction patients. J Genet 89(2):213–216

    PubMed  Google Scholar 

  • Yuan HT, Haig D, Ananth KS (2005) Angiogenic factors in the pathogenesis of preeclampsia. Curr Top Dev Biol 71:297–312

    PubMed  CAS  Google Scholar 

  • Zhang LF, Huynh KD, Lee JT (2007) Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing. Cell 129(4):693–706

    PubMed  CAS  Google Scholar 

  • Zhou H, Hu H, Lai M (2010) Non-coding RNAs and their epigenetic regulatory mechanisms. Biol Cell 102(12):645–655

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (grant number BCS0827546). NMJ is supported by NSF Doctoral Dissertation Improvement Grant (grant number BCS1061370). The authors would like to thank the editors and three anonymous reviewers for insightful comments and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek E. Wildman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sterner, K.N., Jameson, N.M., Wildman, D.E. (2013). Placental Development, Evolution, and Epigenetics of Primate Pregnancies. In: Clancy, K., Hinde, K., Rutherford, J. (eds) Building Babies. Developments in Primatology: Progress and Prospects, vol 37. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4060-4_3

Download citation

Publish with us

Policies and ethics