Skip to main content

Radiophosphorus Treatment of Myeloproliferative Neoplasms

  • Chapter
  • First Online:
Nuclear Medicine Therapy

Abstract

Sodium 32P-phosphate (actually sodium dihydrogen phosphate; NaH2PO4) was the first therapeutic radiopharmaceutical employed in clinical medicine and has been used in numerous clinical settings, virtually all now obsolete except for a few remaining important indications in the treatment of myeloproliferative neoplasia. This chapter will review the history of radiophosphorus in medicine, the dosimetry of 32P-phosphate, and important clinical applications of the radiopharmaceutical, as well as the controversy which arose around its potential for leukemogenesis and the current clinical role for sodium 32P-phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Joliot-Curie I. Artificial production of radioactive elements. In: Nobel lectures, chemistry. Amsterdam: Elsevier; 1966. pp. 1922–1941.

    Google Scholar 

  2. Heilbron JL, Seidel RW, Wheaton BR. Lawrence and his laboratory. Berkeley: Berkeley National Laboratory; 1981.

    Google Scholar 

  3. Lawrence JH, Scott KG, Tuttle LW. Studies on leukemia with the aid of radioactive phosphorus. Int Clin. 1939;3:33–58.

    Google Scholar 

  4. Lawrence JH, Tuttle I, Scott W, et al. Studies on neoplasms with the aid of radioactive phosphorus. I-The total phosphorus metabolism of normal and leukemic mice. J Clin Invest. 1940;19:267–71.

    Article  PubMed  CAS  Google Scholar 

  5. Erf LA, Lawrence JH. Clinical studies with the aid of radioactive phosphorus. I. The absorption and distribution of radio-phosphorus in the blood and its excretion by normal individuals and patients with leukemia. J Clin Invest. 1941;20:567–75.

    Article  PubMed  CAS  Google Scholar 

  6. Levenson SM, Adams MA, Rosen H, et al. Studies in phosphorus metabolism in man. J Clin Invest. 1953;32:497–509.

    Article  PubMed  CAS  Google Scholar 

  7. Low-Beer BVA, Blais RS, Scofield NE. Estimation of dosage for intravenously administered 32P. Am J Roentgenol. 1952;67:28–41.

    CAS  Google Scholar 

  8. Spiers FW, Beddoe AH, King SD, et al. The absorbed dose to bone marrow in the treatment of polycythemia by 32P. Br J Radiol. 1976;49:133–40.

    Article  PubMed  CAS  Google Scholar 

  9. Akabani G. Absorbed dose calculations in Haversian canals for several beta-emitting radionuclides. J Nucl Med. 1993;34:1361–6.

    PubMed  CAS  Google Scholar 

  10. Stabin MG, Stubbs JB, Toohey RE. Radiation dose estimates for radiopharmaceuticals. Oak Ridge Institute for Science and Education, Oak Ridge, TN, 30 April 1996. p. 17.

    Google Scholar 

  11. Navarro-Izquierdo AL, Baringo T, Dominguez J, et al. Metabolic curietherapy with P-32 in bone metastases with breast cancer. Rev Esp Oncol. 1980;27:101–8.

    PubMed  CAS  Google Scholar 

  12. Lawrence JH, Wasserman LR. Multiple myeloma: a study of 24 patients treated with radioactive isotopes (32P and 89Sr). Ann Intern Med. 1950;33:41–55.

    PubMed  CAS  Google Scholar 

  13. Lawrence JH. Nuclear physics and therapy: preliminary report on a new method for the treatment of leukemia and polycythemia. Radiology. 1940;35:51–60.

    CAS  Google Scholar 

  14. Lawrence JH. Early experiences in Nuclear Medicine. J Nucl Med. 1979;20:561–4.

    Google Scholar 

  15. Stroebel CF. Current status of radiophosphorus therapy. Proc Staff Meet Mayo Clin. 1954;29:1–4.

    PubMed  CAS  Google Scholar 

  16. Reed C. Polycythemia rubra vera. Med J Aust. 1965;2:654–8.

    PubMed  CAS  Google Scholar 

  17. Szur L, Lewis SM. The haematological complications of polycythemia vera patients treated with radioactive phosphorus. Br J Radiol. 1966;39:122–30.

    Article  PubMed  CAS  Google Scholar 

  18. Duggan HE. Polycythemia rubra vera and radioactive phosphorus-90 patients. J Can Assoc Radiol. 1966;17:4–9.

    PubMed  CAS  Google Scholar 

  19. Watkins PJ, Fairly GH, Scott RB. Treatment of polycythemia vera. Br Med J. 1967;2:664–6.

    Article  PubMed  CAS  Google Scholar 

  20. Harmath JB, Ledlie EM. Survival of polycythemia vera patients treated with radioactive phosphorus. Br Med J. 1967;2:146–8.

    Article  Google Scholar 

  21. Osgood EE. The case for 32P in treatment of polycythemia vera. Blood. 1968;32:492–9.

    PubMed  CAS  Google Scholar 

  22. Campbell A, Emery EW, Godlee JN, et al. Diagnosis and treatment of primary polycythemia. Lancet. 1970;1:1074–7.

    Article  PubMed  CAS  Google Scholar 

  23. Wasserman LR. The treatment of polycythemia vera. Semin Hematol. 1976;13:57–78.

    PubMed  CAS  Google Scholar 

  24. Vaquez H. Sur une forme speciale de cyanose s’accompagnant d’hyperglobulie excessive et persistante. C R Soc Biol (Paris). 1892;44:384–8.

    Google Scholar 

  25. Epstein E, Goedel A. Haemorrhagische thrombocythamie bei vasculare schrumpf-milz. Virchow Archiv Abteilung. 1934;293:233–47.

    Article  Google Scholar 

  26. Zhan H, Spivak JL. The diagnosis and management of polycythemia vera, essential thrombocythemia, and primary myelofibrosis in the JAK2 V617F era. Clin Adv Hematol Oncol. 2009;7:334–42.

    PubMed  Google Scholar 

  27. Dameshek W. Some speculations on the myeloproliferative syndromes. Blood. 1951;6:372–5.

    PubMed  CAS  Google Scholar 

  28. Barbui T, Barosi G, Birgegard G, et al. Philadelphia-negative classical myeloproliferative neoplasms: Critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol. 2011;29:761–70.

    Article  PubMed  Google Scholar 

  29. Dameshek W. Physiopathology and course of polycythemia as related to therapy. JAMA. 1950;142:790–7.

    Article  CAS  Google Scholar 

  30. Wasserman LR. Polycythemia vera—its course and treatment; relation to myeloid metaplasia and leukemia. Bull NY. Acad Med. 1954;30:343–75.

    CAS  Google Scholar 

  31. Gilbert HS. Modern treatment strategies in polycythemia vera. Semin Hematol. 2003;40 Suppl 1:26–9.

    PubMed  Google Scholar 

  32. Lawrence JH, Berlin NI, Huff RL. The nature and treatment of polycythemia. Medicine. 1953;32:323–88.

    Article  PubMed  CAS  Google Scholar 

  33. Osgood EE. Contrasting incidence of acute monocytic, and granulocytic leukemia in 32P treated patients with polycythemia vera and chronic lymphocytic leukemia. J Lab Clin Med. 1964;64:560–73.

    PubMed  CAS  Google Scholar 

  34. Spivak JL. Polycythemia vera: myths, mechanisms and management. Blood. 2002;100:4272–90.

    Article  PubMed  CAS  Google Scholar 

  35. Schwartz SO, Ehrlich L. The relationship of polycythemia to leukemia: A critical review. Acta Med Scand. 1950;4:129–47.

    CAS  Google Scholar 

  36. Modan B, Lillienfeld AM. Polycythemia vera and leukemia—the role of radiation treatment. Medicine. 1965;44:305–44.

    Article  PubMed  CAS  Google Scholar 

  37. Halnan KE, Russell MH. Comparison of survival and causes of death in patients managed with and without radiotherapy. Lancet. 1965;1:760–3.

    Article  Google Scholar 

  38. Brandt L, Anderson H. Survival and risk of leukemia in polycythemia vera and essential thrombocythaemia treated with oral radiophosphorus: are safer drugs available? Eur J Hematol. 1995;54:21–6.

    Article  CAS  Google Scholar 

  39. Landaw SA. Acute leukemia in polycythemia vera. Semin Hematol. 1976;13:33–48.

    PubMed  CAS  Google Scholar 

  40. Berk PD, Wasserman LR, Fruchtman SM, et al. Treatment of polycythemia vera: a summary of clinical trials conducted by the Polycythemia Vera Study Group. In: Wasserman LR, Berk PD, Berlin NI, editors. Polycythemia vera and the myeloproliferative diseases. Philadelphia, PA: Saunders; 1995. p. 166.

    Google Scholar 

  41. Pearson TC, Green AR, Reilly JT, et al. Letter to the editor: Leukemic transformation in polycythemia vera. Blood. 1998;92:1837–42.

    PubMed  CAS  Google Scholar 

  42. Najean Y. Response to Pearson et al. Blood. 1998;92:1837–8.

    CAS  Google Scholar 

  43. Parmentier C. Use and risks of phosphorus-32 in the treatment of polycythemia vera. Eur J Nuc Med Mol Imaging. 2003;30:1413–7.

    Article  CAS  Google Scholar 

  44. Gangat N, Strand J, Li CY, et al. Leucocytosis in polycythemia vera predicts both inferior survival and leukaemic transformation. Br J Haematol. 2007;138:354–8.

    Article  PubMed  Google Scholar 

  45. Gangat N, Wolanskyj AP. McClure RF et al Risk stratification for survival and leukemic transformation in essential thrombocythemia: A single institution study of 605 patients. Leukemia. 2007;21:270–6.

    Article  PubMed  CAS  Google Scholar 

  46. Tefferi A. Polycythemia vera and essential thrombocythemia: 2011 update on diagnosis, risk-stratification, and management. Am J Hematol. 2011;86:293–301.

    Google Scholar 

  47. Stock W, Godwin J, et al. Leukemogenic risk of hydroxyurea therapy in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Am J Hematol. 1996;52:42–6.

    Article  PubMed  Google Scholar 

  48. Bjorkholm M, Derolf AR, Hultcrantz M, et al. Treatment-related factors for transformation to acute myeloid leukemia and myelodysplastic syndromes in myeloproliferative neoplasms. J Clin Oncol. 2011;29:2410–5.

    Article  PubMed  Google Scholar 

  49. Tennvall J, Brans B. EANM procedure guideline for 32P phosphate treatment of myeloproliferative diseases. Eur J Nucl Med Mol Imag. 2007;34:1324–7.

    Article  Google Scholar 

  50. Tefferi A. Personal communication. 27 April 2011.

    Google Scholar 

  51. Spivak J. Personal communication. 27 April 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward B. Silberstein M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Silberstein, E.B., Eugene, L., Saenger, S.R. (2013). Radiophosphorus Treatment of Myeloproliferative Neoplasms. In: Aktolun, C., Goldsmith, S. (eds) Nuclear Medicine Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4021-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4021-5_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4020-8

  • Online ISBN: 978-1-4614-4021-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics