Skip to main content

Adenosine and Multiple Sclerosis

  • Chapter
  • First Online:
Adenosine

Abstract

The major demyelinating disease of the CNS is multiple sclerosis (MS), which is the foremost disabling pathology among young adults. MS is a chronic, degenerative disease characterized by focal lesions with inflammation, demyelination, infiltration of immune cells, oligodendroglial death, and axonal degeneration. These cellular alterations are accompanied by neurological deficits, such as sensory disturbances, lack of motor coordination, and visual impairment. It is widely accepted that the etiology of this illness has autoimmune and inflammatory grounds, and that a derailment of the immune system leads to cell- and antibody-mediated attacks on myelin.

Both genetic and environmental factors contribute to MS susceptibility. Among them, primary and/or secondary alterations in neurotransmitter signaling including the glutamate and purinergic system lead to oligodendrocyte and myelin damage and contribute to MS pathology. In addition, recent data indicate that adenosine is involved in neuroinflammation, and that activation of adenosine receptors may contribute to tissue damage in experimental models of MS. Moreover, some alterations of adenosine metabolism occur in MS though it is not clear yet whether they are primary or secondary to the disease process. Finally, emerging evidence suggests that enhanced activity of the adenosinergic system may also contribute to the pathophysiology of MS and that this feature may open new therapeutic approaches beneficial for the treatment of MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agresti C, Meomartini ME, Amadio S, Ambrosini E, Serafini B, Franchini L, Volonté C, Aloisi F, Visentin S (2005) Metabotropic P2 receptor activation regulates oligodendrocyte progenitor migration and development. Glia 50:132–144

    PubMed  CAS  Google Scholar 

  • Airas L, Niemela J, Yegutkin G, Jalkanen S (2007) Mechanism of action of IFN-beta in the treatment of multiple sclerosis: a special reference to CD73 and adenosine. Ann N Y Acad Sci 1110:641–648

    Google Scholar 

  • Alberdi E, Sánchez-Gómez MV, Matute C (2005) Calcium and glial cell death. Cell Calcium 38:417–425

    PubMed  CAS  Google Scholar 

  • Alonso A, Hernan MA (2008) Temporal trends in the incidence of multiple sclerosis: a systematic review. Neurology 71:129–135

    PubMed  Google Scholar 

  • Amadio S, Apollini S, D’Ambrosi N, Volonté C (2011) Purinergic signalling at the plasma membrane: a multipurpose and multidirectional mode to deal with amyotrophic lateral sclerosis and multiple sclerosis. J Neurochem 116:796–805

    PubMed  CAS  Google Scholar 

  • Apolloni S, Montilli C, Finocchi P, Amadio S (2009) Membrane compartments and purinergic signaling: P2X receptors in neurodegenerative and neuroinflammatory events. FEBS J 276:354–364

    PubMed  CAS  Google Scholar 

  • Ascherio A, Munger KL (2007) Environmental risk factors for multiple sclerosis. II. Noninfectious factors. Ann Neurol 61:504–513

    PubMed  CAS  Google Scholar 

  • Balabanov R, Strand K, Goswami R, McMahon E, Begolka W, Miller SD, Popko B (2007) Interferon-gamma-oligodendrocyte interactions in the regulation of experimental autoimmune encephalomyelitis. J Neurosci 27:2013–2024

    PubMed  CAS  Google Scholar 

  • Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458–468

    PubMed  Google Scholar 

  • Barnett MH, Henderson AP, Prineas JW (2006) The macrophage in MS: just a scavenger after all? Pathology and pathogenesis of the acute MS lesion. Mult Scler 12:121–132

    PubMed  CAS  Google Scholar 

  • Bi W, Zhu L, Wang C, Liang Y, Liu J, Shi Q, Tao E (2011) Rifampicin inhibits microglial inflammation and improves neuron survival against inflammation. Brain Res 1995:12–20

    Google Scholar 

  • Bjartmar C, Kidd G, Mork S, Rudick R, Trapp BD (2000) Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Ann Neurol 48:893–901

    PubMed  CAS  Google Scholar 

  • Black JA, Liu S, Hains BC, Saab CY, Waxman SG (2006) Long-term protection of central axons with phenytoin in monophasic and chronic-relapsing EAE. Brain 129:3196–3208

    PubMed  Google Scholar 

  • Boison D, Scheurer L, Zumsteg V, Rülicke T, Lityniski P, Fowler B, Brander S, Mohler H (2002) Neonatal hepatic steatosis by disruption of the adenosine kinase gene. Proc Natl Acad Sci U S A 99:6985–6999

    PubMed  CAS  Google Scholar 

  • Bours MJL, Swennen ELR, Di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112:358–404

    PubMed  CAS  Google Scholar 

  • Boyle DL, Sajjadi FG, Firestein GS (1996) Inhibition of synoviocyte collagenase gene-expression by adenosine receptor stimulation. Arthritis Rheum 39:923–930

    PubMed  CAS  Google Scholar 

  • Brown DA, Sawchenko PE (2007) Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis. J Comp Neurol 502:236–260

    PubMed  Google Scholar 

  • Butt AM, Hamilton N, Hubbard P, Pugh M, Ibrahim M (2005) Synantocytes: the fifth element. J Anat 207:695–706

    PubMed  Google Scholar 

  • Butzkueven H, Zhang JG, Soilu-Hanninen M, Hochrein H, Chionh F, Shipham KA, Emery B, Turnley AM, Petratos S, Ernst M et al (2002) LIF receptor signaling limits immune mediated demyelination by enhancing oligodendrocyte survival. Nat Med 8:613–619

    PubMed  CAS  Google Scholar 

  • Charcot J (1868) Histologie de la sclérose en plaque. Gazette des Hôpitaux 41:554–566

    Google Scholar 

  • Chen GQ, Chen YY, Wang XS, Wu SZ, Yang HM, Xu HQ, He JC, Wang XT, Chen JF, Zheng RY (2010) Chronic caffeine treatment attenuates experimental autoimmune encephalomyelitis induced by guinea pig spinal cord homogenates in Wistar rats. Brain Res 1309:116–125

    PubMed  CAS  Google Scholar 

  • Coman I, Aigrot MS, Seilhean D, Reynolds R, Girault JA, Zalc B, Lubetzki C (2006) Nodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis. Brain 129:3186–3195

    PubMed  CAS  Google Scholar 

  • Craner MJ, Fugger L (2011) Axonal injury in reverse. Nat Med 17:423–425

    PubMed  CAS  Google Scholar 

  • Cronstein BN (1994) Adenosine, an endogenous anti-inflammatory agent. J Appl Physiol 76:5–13

    PubMed  CAS  Google Scholar 

  • Cuadros MA, Navascués J (1998) The origin and differentiation of microglial cells during development. Prog Neurobiol 56:173–189

    PubMed  CAS  Google Scholar 

  • D’Souza SD, Bonetti B, Balasingam V, Cashman NR, Barker PA, Troutt AB, Raine CS, Antel JP (1996) Multiple sclerosis: Fas signaling in oligodendrocyte cell death. J Exp Med 184:2361–2370

    PubMed  Google Scholar 

  • Dutta R, Trapp D (2007) Pathogenesis of axonal and neuronal damage in multiple sclerosis. Neurology 68:S22–S31, discussion S43–S54

    PubMed  Google Scholar 

  • Edan G, Leray E (2010) A new treatment era in multiple sclerosis: clinical applications of new concepts. J Neurol Sci. doi:10.1016/j.jns.2010.09.018

  • Eikelenboom P, van Gool WA (2004) Neuroinflammatory perspectives on the two faces of Alzheimer’s disease. J Neural Transm 111:281–294

    PubMed  CAS  Google Scholar 

  • Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120:393–399

    PubMed  Google Scholar 

  • Fontoura P, Garren H (2010) Multiple sclerosis therapies: molecular mechanisms and future. In: Martin R, Lutterotti A (eds) Results and problems in cell differentiation, vol 51. Springer, Berlin, pp 259–285

    Google Scholar 

  • Franciotta D, Salvetti M, Lolli F, Serafini B, Aloisi F (2008) B cells and multiple sclerosis. Lancet Neurol 7:852–858

    PubMed  CAS  Google Scholar 

  • Frei K, Eugster HP, Bopst M, Constantinescu CS, Lavi E, Fontana A (1997) Tumor necrosis factor alpha and lymphotoxin alpha are not required for induction of acute experimental autoimmune encephalomyelitis. J Exp Med 185:2177–2182

    PubMed  CAS  Google Scholar 

  • Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Lassmann H (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132:1175–1189

    PubMed  Google Scholar 

  • Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis—the plaque and its pathogenesis. N Engl J Med 354:942–955

    PubMed  CAS  Google Scholar 

  • Gebicke-Haerter PJ, Christoffel F, Timmer J, Northoff H, Berger M, Van Calker D (1996) Both adenosine A1- and A2-receptors are required to stimulate microglial proliferation. Neurochem Int 29:37–42

    PubMed  CAS  Google Scholar 

  • Geiger JD, Parkinson FE, Kowaluk EA (1997) Regulators of endogenous adenosine levels as therapeutic agents. In: Jacobson JA, Javis MA (eds) Purinergic approaches in experimental therapeutics. Wiley-Liss, New York, pp 55–84

    Google Scholar 

  • Gilroy DW, Lawrence T, Perretti M, Rossi AG (2004) Inflammatory resolution: new opportunities for drug discovery. Nat Rev Drug Discov 3:401–416

    PubMed  CAS  Google Scholar 

  • Giovannoni G, Ebers G (2007) Multiple sclerosis: the environment and causation. Curr Opin Neurol 20:261–268

    PubMed  Google Scholar 

  • González-Fernández E, Sánchez-Gómez MV, Matute C (2010) Activation of adenosine receptors induces apoptosis in oligodendrocytes. Sixth Cajal Winter Conference, p 5

    Google Scholar 

  • Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De Jager PL, de Bakker PI, Gabriel SB, Mirel DB, Ivinson AJ, International Multiple Sclerosis Genetics Consortium et al (2007) Risk alleles for multiple sclerosis identified by a genome wide study. N Engl J Med 357:851–862

    PubMed  CAS  Google Scholar 

  • Hammarberg C, Schulte G, Fredholm BB (2003) Evidence for functional adenosine A3 receptors in microglia cells. J Neurochem 86:1051–1054

    PubMed  CAS  Google Scholar 

  • Hammarberg C, Fredholm BB, Schulte G (2004) Adenosine A3 receptor-mediated regulation of p38 and extracellular-regulated kinase ERK1/2 via phosphatidylinositol-3′-kinase. Biochem Pharmacol 67:129–134

    PubMed  CAS  Google Scholar 

  • Haskó G, Cronstein BN (2004) Adenosine: an endogenous regulator of innate immunity. Trends Immunol 25:33–39

    PubMed  Google Scholar 

  • Haskó G, Szabo C, Nemeth ZH, Kvetan V, Pastores SM, Vizi ES (1996) Adenosine receptor agonists differentially regulate IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. J Immunol 157:4634–4640

    PubMed  Google Scholar 

  • Haskó G, Pacher P, Vizi ES, Illes P (2005) Adenosine receptor signaling in the brain immune system. Trends Pharmacol Sci 26:511–516

    PubMed  Google Scholar 

  • Haskó G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759–770

    PubMed  Google Scholar 

  • He F, Sun YE (2007) Glial cells more than support cells? Int J Biochem Cell Biol 39:661–666

    PubMed  CAS  Google Scholar 

  • Hemmer B, Archelos JJ, Hartung HP (2002) New concepts in the immunopathogenesis of multiple sclerosis. Nat Rev Neurosci 3:291–301

    PubMed  CAS  Google Scholar 

  • Hisahara S, Araki T, Sugiyama F, Yagami K, Suzuki M, Abe K, Yamamura K, Miyazaki J, Momoi T, Saruta T et al (2000) Targeted expression of baculovirus p35 caspase inhibitor in oligodendrocytes protects mice against autoimmune-mediated demyelination. EMBO J 19:341–348

    PubMed  CAS  Google Scholar 

  • Holley JE, Gveric D, Newcombe J, Cuzner ML, Gutowski NJ (2003) Astrocyte characterization in the multiple sclerosis glial scar. Neuropathol Appl Neurobiol 29:434–444

    PubMed  CAS  Google Scholar 

  • Hövelmeyer N, Hao Z, Kranidioti K, Kassiotis G, Buch T, Frommer F, von Hoch L, Kramer D, Minichiello L, Kollias G et al (2005) Apoptosis of oligodendrocytes via Fas and TNF-R1 is a key event in the induction of experimental autoimmune encephalomyelitis. J Immunol 175:5875–5884

    PubMed  Google Scholar 

  • Howell OW, Palser A, Polito A, Melrose S, Zonta B, Scheiermann C, Vora AJ, Brophy PJ, Reynolds R (2006) Disruption of neurofascin localisation reveals early changes preceding demyelination and remyelination in multiple sclerosis. Brain 129:3173–3185

    PubMed  CAS  Google Scholar 

  • Illes P, Norenberg W, Gebicke-Haerter PJ (1996) Molecular mechanisms of microglial activation. B. Voltage- and purinoceptor-operated channels in microglia. Neurochem Int 29:13–24

    PubMed  CAS  Google Scholar 

  • Inoue K, Koizumi S, Tsuda M (2007) The role of nucleotides in the neuron–glia communication responsible for the brain functions. J Neurochem 102:1447–1458

    PubMed  CAS  Google Scholar 

  • Ishibashi T, Dakin K, Stevens B, Lee P, Kozlov S, Stewart C, Fields R (2006) Astrocytes promote myelination in response to electrical impulses. Neuron 49:823–832

    PubMed  CAS  Google Scholar 

  • James G, Butt AM (2001) P2X and P2Y purinoreceptors mediate ATP-evoked calcium signalling in optic nerve glia in situ. Cell Calcium 30:251–259

    PubMed  CAS  Google Scholar 

  • Johnston JB, Silva C, Gonzalez G, Holden J, Warren KG, Metz LM, Power C (2001) Diminished adenosine A1 receptor expression on macrophages in brain and blood of patients with multiple sclerosis. Ann Neurol 49:650–658

    PubMed  CAS  Google Scholar 

  • Keegan BM, Noseworthy JH (2002) Multiple sclerosis. Annu Rev Med 53:285–302

    PubMed  CAS  Google Scholar 

  • Kerschensteiner M, Meinl E, Hohlfeld R (2009) Neuro-immune crosstalk in CNS diseases. Neuroscience 158:1122–1132

    PubMed  CAS  Google Scholar 

  • Koning N, Bö L, Hoek RM, Huitinga I (2007) Downregulation of macrophage inhibitory molecules in multiple sclerosis lesions. Ann Neurol 62:504–514

    PubMed  CAS  Google Scholar 

  • Krause DL, Müller N (2010) Neuroinflammation, microglia and implications for anti-inflammatory treatment in Alzheimer’s disease. Int J Alzheimers Dis. doi:10.4061/2010/732806

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    PubMed  CAS  Google Scholar 

  • Kust BM, Biber K, van Calker D, Gebicke-Haerter PJ (1999) Regulation of K+ channel mRNA expression by stimulation of adenosine A2A receptors in cultured rat microglia. Glia 25:120–130

    PubMed  CAS  Google Scholar 

  • Lassmann H (2007a) Cortical, subcortical and spinal alterations in neuroimmunological diseases. J Neurol 254:15–17

    Google Scholar 

  • Lassmann H (2007b) Multiple sclerosis: is there neurodegeneration independent from inflammation? J Neurol Sci 259:3–6

    PubMed  CAS  Google Scholar 

  • Lassmann H, Bruck W, Lucchinetti CF (2007) The immunopathology of multiple sclerosis: an overview. Brain Pathol 17:210–218

    PubMed  Google Scholar 

  • Lee LS, Xu L, Shin Y, Gardner L, Hartzes A, Dohan FC, Raine C, Homayouni R, Levin MC (2011) A potential link between autoimmunity and neurodegeneration in immune-mediated neurological disease. J Neuroimmunol 235:56–69

    PubMed  CAS  Google Scholar 

  • Lincoln MR, Monpetit A, Cader MZ, Saarela J, Dyment DA, Tiislar M, Fereti V, Tienari PJ, Sadovnick AD, Peltonen L et al (2005) A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat Genet 37:1108–1112

    PubMed  CAS  Google Scholar 

  • Linker RA, Mäuer M, Gaupp S, Martini R, Holtmann B, Giess R, Rieckmann P, Lassmann H, Toyka KV, Sendtner M, Gold R (2002) CNTF is a major protective factor in demyelinating CNS disease: a neuroprotective cytokine as modulator in neuroinflammation. Nat Med 8:620–624

    PubMed  CAS  Google Scholar 

  • Liu B, Hong JS (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 304:1–7

    PubMed  CAS  Google Scholar 

  • Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey. Neurology 46:907–911

    PubMed  CAS  Google Scholar 

  • Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodríguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717

    PubMed  CAS  Google Scholar 

  • Lukashev D, Ohta A, Apasov S, Chen JF, Sitkovsky M (2004) Cutting edge: physiologic attenuation of proinflammatory transcription by the Gs protein-coupled A2A adenosine receptor in vivo. J Immunol 173:21–24

    PubMed  CAS  Google Scholar 

  • Lundmark F, Duvefelt K, Iacobaeus E, Kockum I, Wallstrom E, Khademi M, Oturai A, Ryder LP, Saarela J, Harbo HF et al (2007) Variation in interleukin 7 receptor alpha chain (IL7R) influences risk of multiple sclerosis. Nat Genet 39:1108–1113

    PubMed  CAS  Google Scholar 

  • Marta CB, Montano MB, Taylor CM, Taylor AL, Bansal R, Pfeiffer SE (2005) Signaling cascades activated upon antibody cross-linking of myelin oligodendrocyte glycoprotein: potential implications for multiple sclerosis. J Biol Chem 280:8985–8993

    PubMed  CAS  Google Scholar 

  • Matute C, Pérez-Cerdá F (2005) Multiple sclerosis: novel perspectives on newly forming lesions. Trends Neurosci 28:173–175

    PubMed  CAS  Google Scholar 

  • Matute C, Alberdi E, Domercq M, Pérez-Cerdá F, Pérez-Samartín A, Sánchez-Gómez MV (2001) The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends Neurosci 24:224–230

    PubMed  CAS  Google Scholar 

  • Matute C, Torre I, Pérez-Cerdá F, Pérez-Samartín A, Alberdi E, Etxebarria E, Arranz AM, Rodríguez-Antigüedad A, Sánchez-Gómez MV, Domercq M (2007) P2X7 receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci 7:9525–9533

    Google Scholar 

  • Mayne M, Shepel PN, Jiang Y, Geiger JD, Power C (1999) Dysregulation of adenosine A1 receptor-mediated cytokine expression in peripheral blood mononuclear cells from multiple sclerosis patients. Ann Neurol 45:633–639

    PubMed  CAS  Google Scholar 

  • Meda L, Cassatella MA, Szendrei GI, Otvos L Jr, Baron P, Villalba M (1995) Activation of microglial cells by β-amyloid protein and interferon-γ. Nature 373:647–650

    Google Scholar 

  • Melani A, Pantoni L, Bordoni F, Gianfriddo M, Bianchi L, Vannucchi MG, Bertorelli R, Monopoli A, Pedata F (2003) The selective A2A receptor antagonist SCH 58261 reduces striatal transmitter outflow, turning behaviour and ischemic brain damage induced by permanent focal ischemia in the rat. Brain Res 959:243–250

    PubMed  CAS  Google Scholar 

  • Melani A, Cipriani S, Vannucchi MG, Nosi D, Donati C, Bruni P, Giovannini MG, Pedata F (2009) Selective adenosine A2a receptor antagonism reduces JNK activation in oligodendrocytes after cerebral ischaemia. Brain 132:1480–1495

    PubMed  Google Scholar 

  • Mills JH, Thompson LH, Mueller C, Waickman AT, Jalkanen S, Niemela J, Airas L, Bynoe MS (2008) CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 105:9325–9330

    PubMed  CAS  Google Scholar 

  • Moon DO, Choi YH, Kim ND, Park YM, Kim GY (2007a) Anti-inflammatory effects of β-lapachone in lipopolysaccharide-stimulated BV2 microglia. Int Immunopharmacol 7:506–514

    PubMed  CAS  Google Scholar 

  • Moon DO, Kim KC, Jin CY, Han MH, Park C, Lee KJ, Park YM, Choi YH, Kim GY (2007b) Inhibitory effects of eicosapentaenoic acid on lipopolysaccharide-induced activation in BV2 microglia. Int Immunopharmacol 7:222–229

    PubMed  CAS  Google Scholar 

  • Muzzio L, Martino G, Furlan R (2007) Multifaceted aspects of inflammation in multiple sclerosis: the role of microglia. J Neuroimmunol 191:39–44

    Google Scholar 

  • Niino M, Fukazawa T, Kikuchi S, Sasaki H (2007) Recent advances in genetic analysis of multiple sclerosis: genetic associations and therapeutic implications. Expert Rev Neurother 7:1175–1188

    PubMed  CAS  Google Scholar 

  • Nikic I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M, Bareyre FM, Brück W, Bishop D, Missgeld T, Kerschensteiner M (2011) A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 17:495–500

    PubMed  CAS  Google Scholar 

  • Noseworthy J, Lucchinetti C, Rodriguez M, Weinshenker B (2000) Multiple sclerosis. N Engl J Med 343:938–952

    PubMed  CAS  Google Scholar 

  • Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920

    PubMed  CAS  Google Scholar 

  • Othman T, Yan H, Rivkees SA (2003) Oligodendrocytes express functional A1 adenosine receptors that stimulate cellular migration. Glia 44:166–172

    PubMed  Google Scholar 

  • Patrikios P, Stadelmann C, Kutzelnigg A, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Brück W, Lucchinetti C, Lassmann H (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129:3165–3172

    PubMed  Google Scholar 

  • Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, Lublin FD, Metz LM, McFarland HF, O’Connor PW et al (2005) Diagnosis criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 58:840–846

    PubMed  Google Scholar 

  • Prineas JW, McDonald WI, Franklin RJM (2002) Demyelinating diseases. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, vol 2. Arnold, London, pp 471–550

    Google Scholar 

  • Probert L, Akassoglou K, Pasparakis M, Kontogeorgos G, Kollias G (1995) Spontaneous inflammatory demyelinating disease in transgenic mice showing central nervous system-specific expression of tumor necrosis factor alpha. Proc Natl Acad Sci U S A 92:11294–11298

    PubMed  CAS  Google Scholar 

  • Qian L, Flood PM, Hong JS (2010) Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy. J Neural Transm 117:971–979

    PubMed  CAS  Google Scholar 

  • Raine CS (1994) The Dale E McFarlin Memorial Lecture: the immunology of the multiple sclerosis lesion. Ann Neurol 36:561–572

    Google Scholar 

  • Ren Z, Wang Y, Tao D, Liebenson D, Liggett T, Goswami R, Clarke R, Stefoski D, Balabanov R (2011) Overexpression of the dominant-negative form of interferon regulatory factor 1 in oligodendrocytes protects against experimental autoimmune encephalomyelitis. J Neurosci 31:8329–8341

    PubMed  CAS  Google Scholar 

  • Ribeiro JA, Sebastiao AM, de Mendoza A (2002) Adenosine receptors in the nervous system: pathophysiological implications. Prog Neurobiol 68:377–392

    PubMed  CAS  Google Scholar 

  • Rovaris M, Confavreux C, Furlan R, Kappos L, Comi G, Filippi M (2006) Secondary progressive multiple sclerosis: current knowledge and future challenges. Lancet Neurol 5:343–354

    PubMed  Google Scholar 

  • Ruiz-García A, Monsalve E, Novellasdemunt L, Navarro-Sabate A, Manzano A, Rivero S, Castrillo A, Casado M, Laborda J, Bartrons R, Díaz-Guerra MJ (2011) Cooperation of adenosine with macrophage Toll-4 receptor agonists leads to increased glycolytic flux through the enhanced expression of PFKFB3 gene. J Biol Chem 286:19247–19258

    PubMed  Google Scholar 

  • Sanders P, De Keyser J (2007) Janus faces of microglia in multiple sclerosis. Brain Res Rev 54:274–285

    PubMed  CAS  Google Scholar 

  • Sawcer S, Ban M, Maranian M, Yeo TW, Compston A, Kirby A, Daly MJ, De Jager PL, Walsh E, Lander ES et al (2005) A high-density screen for linkage in multiple sclerosis. Am J Hum Genet 77:454–467

    PubMed  Google Scholar 

  • Selmaj K, Raine CS, Cross AH (1991) Anti-tumor necrosis factor therapy abrogates autoimmune demyelination. Ann Neurol 30:694–700

    PubMed  CAS  Google Scholar 

  • Selmaj K, Papierz W, Glabinski A, Kohno T (1995) Prevention of chronic relapsing experimental autoimmune encephalomyelitis by soluble tumor necrosis factor receptor I. J Neuroimmunol 56:135–141

    PubMed  CAS  Google Scholar 

  • Sitkovsky M, Lukashev D (2005) Regulation of immune cells by local-tissue oxygen tension: HIF1alpha and adenosine receptors. Nat Rev Immunol 5:712–721

    PubMed  CAS  Google Scholar 

  • Sitkovsky MV, Ohta A (2005) The ‘danger’ sensors that STOP the immune response: the A2 adenosine receptors? Trends Immunol 26:299–304

    PubMed  CAS  Google Scholar 

  • Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, Caldwell C, Ohta A, Thiel M (2004) Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol 22:657–682

    PubMed  CAS  Google Scholar 

  • Smith T, Groom A, Zhu B, Turski L (2000) Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med 6:62–66

    PubMed  CAS  Google Scholar 

  • Spanevello RM, Mazzanti CM, Bagatini M, Correa M, Schmatz R, Stefanello N, Thomé G, Morsch VM, Becker L, Bellè L et al (2010) Activities of the enzymes that hydrolyze adenine nucleotides in platelets from multiple sclerosis patients. J Neurobiol 257:24–30

    CAS  Google Scholar 

  • Sperlágh B, Illes P (2007) Purinergic modulation of microglial cell activation. Purinergic Signal 3:117–127

    PubMed  Google Scholar 

  • Stadelmann C, Albert M, Wegner C, Bruck W (2008) Cortical pathology in multiple sclerosis. Curr Opin Neurol 21:229–234

    PubMed  Google Scholar 

  • Stevens B, Porta S, Haak LL, Gallo V, Fields RD (2002) Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36:855–868

    PubMed  CAS  Google Scholar 

  • Thompson AJ, Polman CH, Miller DH, McDonald WI, Brochet B, Filipi M, Montalban X, De Sá J (1997) Primary progressive multiple sclerosis. Brain 120:1085–1096

    PubMed  Google Scholar 

  • Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    PubMed  CAS  Google Scholar 

  • Trapp B, Peterson J, Ransohoff R, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    PubMed  CAS  Google Scholar 

  • Tsutsui S, Schnermann J, Noorbakhsh F, Henry S, Yong VW, Winston BW, Warren K, Power C (2004) A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J Neurosci 24:1521–1529

    PubMed  CAS  Google Scholar 

  • Vivekanandhan S, Soundararajan CC, Tripathi M, Maheshwari MC (2005) Adenosine deaminase and 5′nucleotidase activities in peripheral blood T cells of multiple sclerosis patients. Neurochem Res 30:453–456

    PubMed  CAS  Google Scholar 

  • Williams A, Piaton G, Lubetzki C (2007) Astrocytes-friends or foes in multiple sclerosis? Glia 55:1300–1312

    PubMed  Google Scholar 

  • Zielasek J, Hartung HP (1996) Molecular mechanisms of microglial activation. Adv Neuroimmunol 6:191–202

    PubMed  CAS  Google Scholar 

  • Zipp F, Atkas O (2006) The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci 29:518–527

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sánchez-Gómez, M.V., González-Fernández, E., Arellano, R.O., Matute, C. (2013). Adenosine and Multiple Sclerosis. In: Masino, S., Boison, D. (eds) Adenosine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3903-5_21

Download citation

Publish with us

Policies and ethics